The filament holds up the anther so that pollination and fertilization can occur!
The head of the phospholipids molecule is attracted to water, the tail repels water
The best way to accurately determine the pair with the highest electronegativity difference is by using their corresponding electronegativity values. For the each of the choices, the difference is:
A. H-S = 2.5 - 2.1 = 0.4
B. H-Cl = 3 - 2.1 = 0.9
C. N-H = 3 - 2.1 = 0.9
D. O-H = 3.5 - 2.1 = 1.4
E. C-H = 2.5 - 2.1 = 0.4
As show, D. has the highest difference. Without looking at their values, you can also determine the pair with the highest difference by taking note of the trend of electronegativity on the periodic table. Electronegativity increases as you go right a group and up a period. This makes oxygen the most electronegative element among the other elements paired with hydrogen.
<span>0.925 grams if using hydrochloric acid in the reaction.
0.462 grams if using sulfuric acid in the reaction.
0.000 grams if using nitric acid in the reaction.
Assuming you're using HCl or a similar acid for this reaction, the equation for the reaction is:
Zn + 2 HCl ==> ZnCl2 + H2
So each mole of zinc used, produces 1 mole of hydrogen gas, or 2 moles of hydrogen atoms. So we need to look up the atomic weights of both zinc and hydrogen.
Atomic weight zinc = 65.38
Atomic weight hydrogen = 1.00794
Moles zinc = 30.0 g / 65.38 g/mol = 0.458855919 mol
Since we produce 2 moles of hydrogen atoms per mole of zinc, multiply by 2 and the atomic weight of hydrogen to get the mass of hydrogen produced. So
0.458855919 * 2 * 1.00794 = 0.92499847 grams.
Rounding to 3 significant figures gives 0.925 grams.
To show the assumption of the acid used, the balanced equation for sulfuric acid would be
Zn2 + H2SO4 ==> Zn(SO4)2 + H2
Which means that for every mole of zinc used, 1 mole of hydrogen gas is generated (half that produced via hydrochloric acid).
If nitric acid were used, the reaction is
4Zn + 10HNO3 ==> 4Zn(NO3)2 + N2O + 5H2O
Which means that NO hydrogen gas is generated.
The only justification for assuming hydrochloric acid is used is that it's a fairly common acid that's easy to obtain. But as shown above with 2 alternative acids, the amount of hydrogen gas generated is very dependent upon the exact chemical reaction occurring and asking "How many grams of hydrogen are produced if 30.0 g of zinc reacts?" is a rather silly question unless you specify EXACTLY what the reaction is.</span>
<u>Answer:</u> The complete molecular, ionic, and net ionic equations are given below. The spectator ions are sodium and nitrate ions.
<u>Explanation:</u>
The ionic equation is defined as the equation in which all the substances that are strong electrolytes present in an aqueous state and are represented in the form of ions.
The net ionic equation is defined as the equations in which spectator ions are not included.
Spectator ions are the ones that are present equally on the reactant and product sides. They do not participate in the reaction.
The balanced molecular equation for the reaction of lead (II) nitrate and sodium sulfide follows:

The ionic equation follows:

As sodium and nitrate ions are present on both sides of the reaction. Thus, they are considered spectator ions.
The net ionic equation follows:
