Answer:
C₃H₈(g) + 6 H₂O(g) ⇒ + 10 H₂(g) + 3 CO₂(g)
Explanation:
Propane can be turned into hydrogen by the two-step reforming process.
In the first step, propane and water react to form carbon monoxide and hydrogen. The balanced chemical equation is:
C₃H₈(g) + 3 H₂O(g) ⇒ 3 CO(g) + 7 H₂(g)
In the second step, carbon monoxide and water react to form hydrogen and carbon dioxide. The balanced chemical equation is:
CO(g) + H₂O(g) ⇒ H₂(g) + CO₂(g)
In order to get the net chemical equation for the overall process, we have to multiply the second step by 3 and add it to the first step. Then, we cancel what is repeated.
C₃H₈(g) + 3 H₂O(g) + 3 CO(g) + 3 H₂O(g) ⇒ 3 CO(g) + 7 H₂(g) + 3 H₂(g) + 3 CO₂(g)
C₃H₈(g) + 6 H₂O(g) ⇒ + 10 H₂(g) + 3 CO₂(g)
The volume of N₂ at STP=56 L
<h3>Further explanation</h3>
Given
2.5 moles of N₂
Required
The volume of the gas
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, the volume per mole of gas or the molar volume-Vm is 22.4 liters/mol.
So for 2.5 moles gas :

The volume of the flask would simply be equal to the
volume of the water. And the mass of the water would be the difference after
and before weigh.
mass of water = 489.1 g – 241.3 g
mass of water = 247.8 g
Therefore the volume of water (which is also the volume
of the flask) is:
volume = 247.8 g / (1.00 g/cm^3)
volume = 247.8 cm^3
The total mass of the flash when filled with chloroform
would be:
total mass with chloroform = 241.3 g + 247.8 cm^3 (1.48
g/cm3)
total mass with chloroform = 608.04 g
Answers:
volume = 247.8 cm^3
total mass with chloroform = 608.04 g