<h3>
Answer:</h3>
251 mol Xe
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 1.51 × 10²⁶ atoms Xe
[Solve] moles Xe
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:
- [DA] Multiply/Divide [Cancel out units]:
<u>Step 4: Check</u>
<em>Follow sig fig rule and round. We are given 3 sig figs.</em>
250.747 mol Xe ≈ 251 mol Xe
Answer:
0.005 mol
Explanation:
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
w = given mass of Gold = 1.05 g ,
m = molecular mass of Gold = 197 g/mol
<u>Hence , moles can be calculated as -</u>
n = w / m
= 1.05 g / 197 g/mol = 0.005 mol
If reactants eventually collide,
there is an occurrence of reaction.
<span>
Therefore, when there is an increase concentration of
reactant, meaning to say that there are several moles of it every unit volume. An
example of this is a room having hundred of people will absolutely get higher
concentration compared to a room with one individual only.
Pertaining to effective collisions, if ever there is an
increase of concentration, the frequency and rate of effective collisions among
reactants surges in such a way that the rate of reaction also surges. Same with
passing into a room with only 1 individual compared to hundred people blind
persons, you probably want to proceed to the room with several people.</span>
<span>This is the simple logic
behind that scientific existence.</span>
Explanation:
Since pressure remained constant, we can eliminate P from the equation
Doing some algebra and converting temperature to Kevin by adding 273, you should obtain the same result.