Keeping in mind a total ignorance of both the health benefits of these teas, and the interaction between milk and antioxidants, I believe that it is possible that milk could hinder these benefits.
Tea is usually a hot beverage. Milk, when added to this beverage, would easily dissolve. When a solute (milk) dissolves in a solvent (tea), the chemical properties of the resulting solution can become quite distinct from both of the original substances. It seems possible that the same chemical properties of tea that make it healthy could be altered by the addition of milk.
<h3>Answer:</h3>
#1. Ca²⁺
# 2. Ca²⁺(aq) + SO₃²⁻(aq) → CaSO₄(s)
#3. 3Ag⁺(aq) + PO₄³⁻(aq) → Ag₃PO₄(s)
<h3>Explanation:</h3>
The question above concerns solubility of salts or ions in water.
The solution given contains Ag+, Ca2+, and Co2+ ions.
- In the first case, when Lithium bromide is added to the solution, there is no white precipitate formed.
- In the second case, the addition of Lithium sulfate results in the formation of a precipitate because of the Ca²⁺ in the solution combined with the SO₃²⁻ from lithium sulfate to form an insoluble CaSO₄.
- The net ionic equation for the reaction is;
Ca²⁺(aq) + SO₃²⁻(aq) → CaSO₄(s)
- From the solubility rules, all sulfates are soluble except BaSO₄, CaSO₄, and PbSO₄.
- In the third case, the addition of Lithium phosphate results in the formation of a precipitate because Ag⁺ ions in the solution combine with phosphate ions ( PO₄³⁻) from lithium phosphate to form an insoluble salt, Ag₃PO₄.
- The net ionic equation for the reaction is;
3Ag⁺(aq) + PO₄³⁻(aq) → Ag₃PO₄(s)
- According to solubility rules, all phosphates are insoluble in water except Na₃PO₄, K₃PO₄, and (NH₄)₃PO₄.
984 grams of strontium will be recovered from 9.84x10^8 cubic meter of seawater.
Explanation:
From the question data given is :
volume of strontium in sea water= 9.84x10^8 cubic meter
(1 cubic metre = 1000000 ml)
so 9 .84x10^8 cubic meter
= 984 ml.
density of sea water = 1 gram/ml
from the formula mass of strontium can be calculated.
density = 
mass = density x volume
mass = 1 x 984
= 984 grams of strontium will be recovered.
98400 centigram of strontium will be recovered.
Strontium is an alkaline earth metal and is highly reactive.
__ KClO₃ → __ KCl + __ O₂
Left Side:
1 K
1 Cl
3 O
Right Side:
1 K
1 Cl
2 O
Since the least common multiple of 3 and 2 is 6, we need to multiply the compound with 2 oxygen by 3 and the compound with 3 oxygen by 2.
This gives us 2KClO₃ → __ KCl + 3O₂.
However, this equation is still not balanced.
Left Side:
2 K
2 Cl
6 O
Right Side:
1 K
1 Cl
6 O
In order to balance the K and Cl, we need to multiply the KCl compound on the right side by 2.
2KClO₃ → 2KCl + 3O₂
Because they consume prey from all trophic levels beneath them.