1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grandymaker [24]
4 years ago
14

A student measures the mass of a substance as 1.7132 kg and it’s volume as 0.65 L. What is the density of the substance in g/mL?

Round your answer to the correct number of significant figures.
Chemistry
1 answer:
7nadin3 [17]4 years ago
3 0

Answer:

\rho =2.6g/mL

Explanation:

Hello,

In this case, considering that the density is defined as:

\rho =\frac{m}{V}

Thus, since 1 kg equals 1000 g and 1 L equal 1000 mL, the required density in g/mL turns out:

\rho =\frac{1.7132kg}{0.65L}*\frac{1000g}{1kg}*\frac{1L}{1000mL}   \\\\\rho=2.6g/mL

Take into account that since 0.65 L has two significant figures, the result is also shown with two significant figures.

Regards.

You might be interested in
If 50 ml of 0.235 M NaCl solution is diluted to 200.0 ml what is the concentration of the diluted solution
Helen [10]

This is a straightforward dilution calculation that can be done using the equation

M_1V_1=M_2V_2

where <em>M</em>₁ and <em>M</em>₂ are the initial and final (or undiluted and diluted) molar concentrations of the solution, respectively, and <em>V</em>₁ and <em>V</em>₂ are the initial and final (or undiluted and diluted) volumes of the solution, respectively.

Here, we have the initial concentration (<em>M</em>₁) and the initial (<em>V</em>₁) and final (<em>V</em>₂) volumes, and we want to find the final concentration (<em>M</em>₂), or the concentration of the solution after dilution. So, we can rearrange our equation to solve for <em>M</em>₂:

M_2=\frac{M_1V_1}{V_2}.

Substituting in our values, we get

\[M_2=\frac{\left ( 50 \text{ mL} \right )\left ( 0.235 \text{ M} \right )}{\left ( 200.0 \text{ mL} \right )}= 0.05875 \text{ M}\].

So the concentration of the diluted solution is 0.05875 M. You can round that value if necessary according to the appropriate number of sig figs. Note that we don't have to convert our volumes from mL to L since their conversion factors would cancel out anyway; what's important is the ratio of the volumes, which would be the same whether they're presented in milliliters or liters.

5 0
3 years ago
1. Calculate the molarity when 403 g MgSO4 is dissolved to make a 5.25 L solution. Round to two significant digits.
lisov135 [29]

Answer:

1. Molarity of MgSO₄ = 0.6 M

2. Molarity of AgNO₃ = 0.06 M

3. volume of acetic acid = 250 mL

4. Molarity of NaCl= 2.3 M

5. Mass of C₁₂H₂₂O₁₁ = 4.1 g

6. Mass of C₁₀H₈ (naphthalene) = 77 g

7. mass of ethanol = 11 g

8. Mass of DDT = 0.011 mg

Explanation:

Ans 1.

Data given

mass of MgSO₄ = 403

Volume of solution = 5.25 L

Solution:

First we will find mole of solute

                 no. of moles = mass in grams / Molar mass . . . . . .(1)

Molar mass of MgSO₄ = 24 + 32 + 4(16)

Molar mass of MgSO₄ = 120 g/mol

Put values in equation 1

             no. of moles = 403 g / 120 g/mol

             no. of moles = 3.36 mol

Now to find molarity

Formula used

            Molarity = No. of moles of solute / solution in L . . . . . . (2)

Put Values in above equation

           M = 3.36 mol / 5.25 L

           M = 0.64

So, round the figure to two significant digits.

Molarity of MgSO₄ = 0.64 M

_____________________

Ans 2.

Data given

mass of AgNO₃ = 1.24 g

Volume of solution = 125 mL

convert mL to L

1000 mL = 1 L

125 mL = 125/1000 = 0.125

Solution:

First we will find mole of solute

                 no. of moles = mass in grams / Molar mass . . . . . .(1)

Molar mass of AgNO₃ = 108 + 14 + 3(16)

Molar mass of AgNO₃ = 170 g/mol

Put values in equation 1

             no. of moles = 1.24 g / 170 g/mol

             no. of moles = 0.0073 mol

Now to find molarity

Formula used

            Molarity = No. of moles of solute / solution in L . . . . . . (2)

Put Values in above equation

           M = 0.0073 mol / 0.125 L

           M = 0.06

So, round the figure to two significant digits.

Molarity of AgNO₃ = 0.06 M

______________________

Ans 3.

Data Given:

volume of acetic acid = 500 mL

% solution of acetic acid (M)= 50%

volume of acetic acid needed = ?

Solution:

formula used

    percent of solution = volume of solute/ volume of solution x 100

Put Values in above formula

                        50 % = volume of solute / 500 mL x 100

Rearrange the above equation

                   volume of solute =   50 x 500 mL /100

                   volume of solute =   250 mL

So, volume of acetic acid = 250 mL

______________________

Ans 4

Data Given:

Molarity of NaCl (M1) = 6 M

Volume of NaCl (V1) = 750 mL

convert mL to L

1000 ml = 1 L

750 ml = 750/1000 = 0.75 L

Volume of dilute solution (V2)= 2 L

Molarity of dilute solution (M2) = ?

Solution:

Dilution Formula will be used

                M1V1 = M2V2 . . . . . . (1)

Put values in equation 1

               6  M x 0.75 L = M2 x 2 L

Rearrange the above equation

               M2 = 6 M x 0.75 L / 2 L

               M2 = 2.25 M

So, round the figure to two significant digits.

Molarity of NaCl= 2.3 M

_________________________

Ans 5.

Data Given:

Molarity of C₁₂H₂₂O₁₁ = 0.16 M

Mass of C₁₂H₂₂O₁₁ (m) = ?

Volume of dilute solution = 75 mL

convert mL to L

1000 ml = 1 L

75 ml = 75/1000 = 0.075 L

Solution:

As we know

            Molarity = no.of moles/ liter of solution . . . . . . .(1)

we also know that

           no.of moles = mass in grams / molar mass . . . . . (2)

Combine both equation 1 and 2

            Molarity = (mass in grams / molar mass) / liter of solution . . . . (3)

Molar mass of C₁₂H₂₂O₁₁ (Sucrose) = 12(12) +22(1) +11(16)

Molar mass of C₁₂H₂₂O₁₁ (Sucrose) = 144 +22 + 176

Molar mass of C₁₂H₂₂O₁₁ (Sucrose) = 342 g/mol

Put values in equation in equation 3

              0.16 M = (mass in grams / 342 g/mol) / 0.075 L

Rearrange the above equation

         mass in grams = 0.16 mol/L x 0.075 L x 342 g/mol

         mass in grams = 4.104 g

So, round the figure to two significant digits.

Mass of C₁₂H₂₂O₁₁ = 4.1 g

____________________

The remaing portion is in attachment

8 0
4 years ago
There is some gas in a container at pressure 136 atm. When 142 dm3 gas is released at pressure of 1 atm,then the pressure of the
mamaluj [8]

Answer:

228.7dm^{3}

Explanation:

According to Boyle's law

P1V1 = P2V2

where P1& P2 are initial and final pressure

and V1& V2 and initial and final volumes respectively.

Given:

P1 = 136atm, P2 = 131.6atm

V1 = 142dm^{3}; V2 = ?

V2 = \frac{P1V1}{P2} = \frac{136*142}{131.6}

= 146.7dm^{3}

Total volume, V = V1 + V2

=146.7 + 142

<u>= 228.7</u>dm^{3}<u></u>

8 0
3 years ago
A chemistry student in lab needs to fill a temperature-control tank with water. The tank measures 24.0 cm long by 21.0 cm wide b
Natalija [7]

Answer:

The required volume of water the student needs is 4.9 litres of water

Explanation:

From the diagram related to the question, we have;

The dimensions of the tank are;

Length of tank = 24.0 cm = 0.24 m

Width of tank = 21.0 cm = 0.21 m

Depth of tank = 13.0 cm. = 0.13 m

Allowance provided between the top of the tank and the top of the water = 2.0 cm

Diameter of the round bottom flask, D = 10.5 cm = 0.105 m

Therefore, the radius of the round bottom flask, r = 0.105/2 = 0.0525 m

Therefore we have;

Depth of water in the tank = Depth of tank - Allowance provided between the top of the tank and the top of the water

∴ Depth of water in the tank = 13.0 - 2.0 = 11.0 cm = 0.11 m

Given that the flask is immersed in the water contained in the tank to raise the tank water level, we have;

Volume of water + Volume of flask in the tank = Length of tank × Width of tank × Depth of water in the tank

Volume of water + Volume of flask in the tank =  0.24 × 0.21 × 0.11 = 0.005544 m³ = 0.005544 m³× 1000 l/m³ = 5.544 l

The volume of the spherical flask = 4/3·π·r³ = 4/3·π·0.0525³ = 6.06×10⁻⁴ m³ = 6.06×10⁻⁴ m³ × 1000 l/m³ = 0.606 l

The required volume of water the student needs , V = Volume of water + Volume of flask in the tank - The volume of the spherical flask = 5.544 l - 0.606 l = 4.9 l.

6 0
3 years ago
On July 8th, I will be 8.51472x10^8 seconds old. How old will I be in years? (Assume 365 days in a year.) Group of answer choice
KatRina [158]

Answer:

26.98

almost 27 years

5 0
3 years ago
Other questions:
  • How many milliliters of a 0.266 m kno3 solution are required to make 150.0 ml of 0.075 m kno3 solution? 42.3 ml 23.6 ml 35.1 ml
    12·1 answer
  • What is the name for the negative subatomic particles in an atom?
    10·2 answers
  • Identify the single displacement reaction.
    8·2 answers
  • For the reaction hconh2(g)⇌nh3(g)+co(g), k= 4.84 at 400 k what can be said about this reaction at this temperature? view availab
    9·1 answer
  • A kilobyte is 210. A megabyte is 220 bytes. How many kilobytes are in a megabyte? Use the exponent rule for division to find you
    13·2 answers
  • __is when two genetic sequences bind together because of the hydrogen bonds that form between the base pairs ​
    13·1 answer
  • In the event that you are exposed to infectious materials by being accidentally stuck with a used needle, you should report it t
    12·1 answer
  • A 2.67 g piece of zinc (density = 7.14 g/mL) is added to a graduated cylinder that contains 12.13 mL H 2 O . What will be the fi
    9·1 answer
  • Is calcium oxide a Element or compound or mixture?
    13·2 answers
  • What would likely to happen if<br>the wind hit the mountain? Will it<br>change direction?​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!