To verify the identity, we can make use of the basic trigonometric identities:
cot θ = cos θ / sin θ
sec θ = 1 / cos <span>θ
csc </span>θ = 1 / sin θ<span>
Using these identities:
</span>cot θ ∙ sec θ = (cos θ / sin θ ) (<span> 1 / cos </span><span>θ)
</span>
We can cancel out cos <span>θ, leaving us with
</span>cot θ ∙ sec θ = 1 / sin θ
cot θ ∙ sec θ = = csc <span>θ</span>
Answer:
(a) 693.12 torr
(b) 68.5 kilopascals
(c) 0.862 atmosphere
(d) 1.306 atmospheres
(e) 36.74 psi
Explanation:
(a) 0.912 atm = 0.912 atm × 760 torr/1 atm = 693.12 torr
(b) 0.685 bar = 0.685 bar × 100 kPa/1 bar = 68.5 kPa
(c) 655 mmHg = 655 mmHg × 1 atm/760 mmHg = 0.862 atm
(d) 1.323×10^5 Pa = 1.323×10^5 Pa × 1 atm/1.01325×10^5 Pa = 1.306 atm
(e) 2.50 atm = 2.50 atm × 14.696 psi/1 atm = 36.74 psi
Answer:
The vibrations from sound waves cause our ears to send signals to our brains to create sound. The speed of sound waves will determine the sound's pitch, or how high or low something sounds. Sound waves are important because they allow us to hear important messages and emergency signals to protect ourselves.
Explanation:
I hope this helps :)
The radius of the circular motion at the given speed is 1.56 m.
The given parameters;
- <em>speed of the rock, v = 2.5 m/s</em>
- <em>acceleration of the rock, a = 4 m/s²</em>
<em />
The radius of the circular motion is calculated by using centripetal acceleration formula as follows;

Thus, the radius of the circular motion at the given speed is 1.56 m.
Learn more about centripetal acceleration here: brainly.com/question/79801
Answer:
je3ui3ndiewncxihebcrebcrebdhcbrhdbcvihrbde
Explanation: