Impulse = Change in momentum.
The ball was moving with a momentum of 0.45 * 22 = 9.9
The ball comes to rest in the receivers arm; this means the ball's final velocity = 0. So mv2 = 0.45 * 0
The magnitude of the impact is just the change in momentum. 9.9 - (0.45 * 0) = 9.9
To find the mass of the planet we will apply the relationship of the given circumference of the planet with the given data and thus find the radius of the planet. From the kinematic equations of motion we will find the gravitational acceleration of the planet, and under the description of this value by Newton's laws the mass of the planet, that is,
The circumference of the planet is,

Under the mathematical value the radius would be



Using second equation of motion

Replacing the values given,

Rearranging and solving for 'a' we have,

Using the value of acceleration due to gravity from Newton's law we have that

Here,
r = Radius of the planet
G = Gravitational Universal constant
M = Mass of the Planet


Therefore the mass of this planet is 
Answer:
The mass of the gold bar is 1,544 g
Explanation:
Answer:
Just above the pole (top-most red circle)
Explanation:
Polaris is used to identify North direction. Since, the Earth rotates on its axis which is along North-south, Polaris never seems to rise and set from the Northern hemisphere. This is because Polaris lies above north pole. Thus, in the given diagram, Polaris is above the North pole on the axis represented by top-most red circle.