Answer:

Explanation:
Hello,
In this case, since the given undergoing chemical reaction is correctly balanced, the reaction quotient is computed as well as the equilibrium constant but in terms of the given concentrations that are:

In such a way, the reaction quotient turns out:

Taking into account that carbon is not included since it is solid.
Best regards.
Hmm trick question here's my answer: the content: protons charge the electrons into its usage , the size: 1.6fm if I'm wrong sorry if I'm right: HA IN YOUR FACE HA!!!
Answer : The molarity of solution is, 1.73 mole/L
Explanation :
The relation between the molarity, molality and the density of the solution is,
where,
![d=M[\frac{1}{m}+\frac{M_b}{1000}]](https://tex.z-dn.net/?f=d%3DM%5B%5Cfrac%7B1%7D%7Bm%7D%2B%5Cfrac%7BM_b%7D%7B1000%7D%5D)
d = density of solution = 
m = molality of solution = 2.41 mol/kg
M = molarity of solution = ?
= molar mass of solute (toluene) = 92 g/mole
Now put all the given values in the above formula, we get the molality of the solution.
![0.876g/ml=M\times [\frac{1}{2.41mol/kg}+\frac{92g/mole}{1000}]](https://tex.z-dn.net/?f=0.876g%2Fml%3DM%5Ctimes%20%5B%5Cfrac%7B1%7D%7B2.41mol%2Fkg%7D%2B%5Cfrac%7B92g%2Fmole%7D%7B1000%7D%5D)

Therefore, the molarity of solution is, 1.73 mole/L