Answer:
d = 0.98 g/L
Explanation:
Given data:
Density of acetylene = ?
Pressure = 0.910 atm
Temperature = 20°C (20+273 = 293 K)
Solution:
Formula:
PM = dRT
R = general gas constant = 0.0821 atm.L/mol.K
M = molecular mass = 26.04 g/mol
0.910 atm × 26.04 g/mol = d × 0.0821 atm.L/mol.K×293 K
23.7 atm.g/mol = d × 24.1 atm.L/mol
d = 23.7 atm.g/mol / 24.1 atm.L/mol
d = 0.98 g/L
The top number of a portion is called its numerator whereas the bottom number is its denominator. So a Fraction is the quantity of shaded parts separated by the quantity of a balance of as demonstrated as follows: number of shaded parts is the numerator over the whole part which is the denominator.
Answer: Answer:
"The arrangement of atoms or ions in a crystal " is described by the terms body-centered cubic and face-centered cubic.
Explanation:
Face centred cubic system explains the crystal structure where an atom is present at each cubic corner of the crystal and the centre of each cube face. Meaningfully, a closed packed plane where at each "face of the cube" atoms touch the alongside face diagonals.
Whereas in body centric cube system has the lattice point present at the 8 corners of cell and an additional one at the center of the cell. Thus, both explains how the atom or ions are placed or arranged in a crystal.
Explanation: Hope this helps :)
Hi!
All rocks are connected in a cycle of creation, change, and destruction called the Rock Cycle. The rock cycle begins with molten rock (magma below ground, lava above ground), which cools and hardens to form igneous rock.
Hope this helps!
~CoCo
Answer:
Carbohydrates
Explanation:
Increased exercise intensity means the overall need for energy increases. As we increase exercise intensity we increase our glucose uptake and oxidation which far exceeds uptake, indicating that muscle stores of glycogen are being used. At moderate intensities (65%) there is an increased need for muscle glycogen and muscle triglycerides which is fat. At higher levels of intensities (85%) there is an even greater need for energy, and this is met almost solely by an increased uptake of glucose from the blood and from muscle glycogen.
In the case of fats as an energy fuel source at high intensities, increasing levels of intensity increases fat oxidation but once we get into higher levels of intensity, we return to levels of fat oxidation similar to very low intensities.