Answer:
0.774g of ethanol
0.970mL of ethanol
Explanation:
Molality is an unit of concentration defined as the ratio between moles of solute and kg of solvent.
In the problem, you need to prepare a 1.2m solution of ethanol (Solute) in t-butanol (solvent).
14.0g of butanol are <em>0.014kg </em>and as you want to prepare the 1.2m solution, you need to add:
0.014kg × (1.2moles / kg) = 0.0168 moles of solute = Moles of ethanol
To convert moles of ethanol to mass you require molar mass (Molar mass ethanol, C₂H₅OH = 46.07g/mol). Thus, mass of 0.0168 moles are:
0.0168moles Ethanol ₓ (46.07g / mol) =
<h3>0.774g of ethanol</h3>
And to convert mass in g to mL you require density of the substance (Density of ethanol = 0.798g/mL):
0.774g ₓ (1mL / 0.798g) =
<h3>0.970mL of ehtanol</h3>
Answer:
C
Explanation:
The early ideas of the atom states that the indivisible object is hollow or is a solid object with nothing inside. The later discoveries or works of the scientists states that inside the atoms are the subatomic particles which are the electrons, protons, and neutrons.
Answer:
The correct answer would be - c. A solid was added to water and the mixture was stirred until the solid was no longer visible
Explanation:
Photostabalizing is the process where a solid change its color in the presence of ultraviolet light, it is a chemical change, so the first option would not be the correct answer.
when two liquid or aqueous solutions are mixed together and form a solid substance, this reaction is known as precipitation and it is a chemical reaction too.
When a solid is placed in a liquid and after stirring it makes the solid vanish is a physical change known as dissolving character.
Thus, the correct answer is option C.
Answer:
Explanation:
<u>1) Data:</u>
a) Hypochlorous acid = HClO
b) [HClO} = 0.015
c) pH = 4.64
d) pKa = ?
<u>2) Strategy:</u>
With the pH calculate [H₃O⁺], then use the equilibrium equation to calculate the equilibrium constant, Ka, and finally calculate pKa from the definition.
<u>3) Solution:</u>
a) pH
b) Equilibrium equation: HClO (aq) ⇄ ClO⁻ (aq) + H₃O⁺ (aq)
c) Equilibrium constant: Ka = [ClO⁻] [H₃O⁺] / [HClO]
d) From the stoichiometry: [CLO⁻] = [H₃O⁺] = 2.29 × 10 ⁻⁵ M
e) By substitution: Ka = (2.29 × 10 ⁻⁵ M)² / 0.015M = 3.50 × 10⁻⁸ M
f) By definition: pKa = - log Ka = - log (3.50 × 10 ⁻⁸) = 7.46