Answer:
If you do this enough times, you can make an object positive or negative. Friction is one of the ways to separate charge. Have you ever had a science lab where
Explanation:
<span>In my opinion, I myself believe that there are only two supernovae. The first is the white dwarf. It makes sense because if something is too big for its size, it will "explode". Just like a basketball with too much air. Massive star supernovae is like something has reached it's full potential and cannot get any bigger or better.</span>
Answer:
(a) To draw water from a well we have to pull at the rope.
(b) A charged body attracts an uncharged body towards it.
(c) To move a loaded trolley we have to pull it.
(d) The north pole of a magnet repels the north pole of another magnet.
Explanation:
Just trust me
Answer:
<em>Correct choice: b 4H</em>
Explanation:
<u>Conservation of the mechanical energy</u>
The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):
E = U + K
The GPE is calculated as:
U = mgh
And the kinetic energy is:

Where:
m = mass of the object
g = gravitational acceleration
h = height of the object
v = speed at which the object moves
When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

Since the energy is conserved, U1=U2
![\displaystyle mgH=\frac{1}{2}mv^2 \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%20%20%20%20%5Cqquad%5Cqquad%20%5B1%5D)
For the speed to be double, we need to drop the snowball from a height H', and:

Operating:
![\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%27%3D4%5Cfrac%7B1%7D%7B2%7Dm%28v%29%5E2%20%5Cqquad%5Cqquad%20%5B2%5D)
Dividing [2] by [1]

Simplifying:

Thus:
H' = 4H
Correct choice: b 4H
I think it is June. June is the longest day/