Answer:
That scenario can be explained by the idea of the contribution of dark matter on that point.
Explanation:
It can be explained through the idea of dark matter, this one was born to explain why stars (or any object) that were farther for the supermassive black hole in the center of the Milky Way galaxy didn't decrease it rotational velocity as it was expected according to equation 1.
(1)
Where v is the rotational velocity, G is the gravitational constant, M is the mass of the supermassive black hole, and r is the orbital radius.
Notice, that If the distance increases the orbital speed decreases (inversely proportional).
Using the formula KE=1/2mv^2
a: The kinetic energy doubles.
b: The kinetic energy quadruples.
c: The kinetic energy is cut in half.
Hopefully it’s clear how the formula can show you this.
gravitational potential is directly proportional to the height of the object relative to a reference line and is given as
PE = mgh
where m = mass of object , g = acceleration due to
gravity and h = height of the object above the reference line .
as the skydiver falls , its height above the ground decrease and hence the gravitational potential energy of the skydiver decrease.
as per conservation of energy , total energy of the skydiver must remain constant all the time . hence the decrease in potential energy appears as increase in kinetic energy by same amount to keep the total energy constant
KE + PE = Total energy
so as the skydiver falls , it gains speed and hence the kinetic energy of skydiver increase since kinetic energy is directly proportional to the square of the speed.
when the parachute opens, the skydiver experience force in upward which tries to balance the weight of the skydiver. hence the speed of the skydiver decrease until upward force becomes equal to the downward force. hence the kinetic energy decrease just after the parachute opens
The frequency of the wave is 
Explanation:
The frequency, the wavelength and the speed of a wave are related by the following equation:

where
c is the speed of the wave
f is the frequency
is the wavelength
For the radio wave in this problem,


Therefore, the frequency is:

Learn more about waves here:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly