Answer:
BRAINLIEST PLEASE!!!
A = Smooth Endoplasmic Reticulum
B = Vacuole
C = Mitochondria (Plural)
D = Nucleolus
E = Cell Wall
Explanation:
This is obviously a plant cell. Animal cells do not have cell walls(E), and most animal cells will not have a vacuole(B). Smooth Endoplasmic Reticulum: This produces protiens (contains ribosomes) but when looked through a microscope, will appear to be smooth. The vacuole(B) is like a storage for the plant cell, and it helps support the plant cell. This is the reason why plants “droop” when you don’t water them for a long time. Mitochondia (Plural) processes nutrients for the cell. The nucleolus(D) covers the nucleus. It’s main function is to process RNA and combine it with proteins. The cell wall(E) helps support and protect the cell.
Which is an example of a compound? sand, gold, water, or iodine? well, the answer is water, water is a compound.
You have to use everything that is given since you have to know which is the limiting reactant. We find the limiting reactant by calculating the number of moles of each reactant and compare the number of moles. The limiting reactant would be the one that is consumed fully by the reaction.
Answer:
A C and D hope this helps
Explanation:
Answer:
when electron emit the radiations it means it jumped to the lower energy level from higher energy level.
Explanation:
When electron jump into lower energy level from high energy level it loses the energy.
The process is called de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.