Answer:
1.34 x 10^3 Pa
Explanation:
density of oil = 0.85 x 10^3 kg/m^3
g = 9.81 m/s^2
height of oil column = 16.1 cm = 0.161 m
Pressure on the surface of water = height of oil column x density of oil x g
= 0.161 x 0.85 x 10^3 x 9.81 = 1.34 x 10^3 Pa
Thus, the pressure on the surface of water is 1.34 x 10^3 Pa.
Makes no sense get a better question
Answer:
a) speed when Jack sees the pot : 12.92 meters per second
b) height difference 163.115 meters
Explanation:
First to calculate te initial speed we use the acceleration formula:
a= v1-v0/t
Acceleration being gravity's acceleration (9.8 m/s^2)
v1 being the speed when Jill sees the pot
v0 when Jack sees it
and t the time between
Solving for v0 it would be
v1 - a*t = v0
replacing

For the second question we use the position formula setting y0 and t0 as the position and time when jack sees the pot. (and setting the positive axis downward I.E. one meter below jack would be 1m not -1m)
The formula is

replacing

Answer:
The behavior of droplets trapped in geometric structures is essential to droplet manipulation applications such as for droplet transport. Here we show that directional droplet movement can be realized by a V-shaped groove with the movement direction controlled by adjusting the surface wettability of the groove inner wall and the cross sectional angle of the groove. Experiments and analyses show that a droplet in a superhydrophobic groove translates from the immersed state to the suspended state as the cross sectional angle of the groove decreases and the suspended droplet departs from the groove bottom as the droplet volume increases. We also demonstrate that this simple grooved structure can be used to separate a water-oil mixture and generate droplets with the desired sizes. The structural effect actuated droplet movements provide a controllable droplet transport method which can be used in a wide range of droplet manipulation applications.
Explanation:
BOOM NOW I WINNNNNNNNNNNn
the halogens is group 17,,