Answer:
1a) 857143 m
1b) 414 m
2a)
2b)
3) the medium of air has a wavelength of 0.334 m, the medium of water has a wavelength of 1.493 m, and the medium of 5.130 m.
Explanation:
Question 1a)
Given the velocity/speed, and frequency of the wave, the length can be calculated using these two quantites.
[ λ = v / f ] wavelength = <u>v</u>elocity of the wave / <u>f</u>requency of the wave in Hz.
Since 3 × 10^8 × ms^-1 is the velocity, and 350Hz is the frequency.
Anything to the negative power is reciprocated. i.e ms^-1 = m/s.
The wavelength is 300000000m/350Hz = 857142.8571428..... m ≈ 857143 m
Question 1b) Given that the frequency of the second wave in water is 1% of the first wave, and the speed of the second wave is 1450ms^-1
Therefore the second wave has a frequency of 1% of 3.5 = 350/100 Hz = 3.5 Hz
The wavelength is found using the same
formula: wavelength = 1450m/3.5Hz = 414.2857142857.... m ≈ 414 m
Question 2a)
Question 2b)
Question 3) Remember, the speed of sound of the medium = frequency of the medium × wavelength of the medium.
Therefore the wavelength of the medium = speed of sound of the medium / frequency of the medium. This has a similar correlation to the wavelength formula. We are given that all these mediums have a frequency of 1KHz = 1000Hz, where So the wavelength of each medium =
Question 4)
Terminal velocity is the velocity at which a falling body experience
when its weight is equal to the force resistance of force opposing the
fall.
At terminal velocity the acceleration of the body is zero,
which implies that the value of the this velocity is a uniform.
Answer:
230.4 N
Explanation:
From the question given above, the following data were obtained:
Charge (q) of each protons = 1.6×10¯¹⁹ C
Distance apart (r) = 1×10¯¹⁵ m
Force (F) =?
NOTE: Electric constant (K) = 9×10⁹ Nm²/C²
The force exerted can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × (1.6×10¯¹⁹)² / (1×10¯¹⁵)²
F = 9×10⁹ × 2.56×10¯³⁸ / 1×10¯³⁰
F = 2.304×10¯²⁸ / 1×10¯³⁰
F = 230.4 N
Therefore, the force exerted is 230.4 N
Answer:
F = 274.68[N]
Explanation:
The gravitational force is equal to the weight of a body, or this case that of a person. Weight can be calculated by means of the product of mass by gravitational acceleration. In this way we have the following equation:

where:
F = force or weight [N]
m = mass = 28 [kg]
g = gravity acceleration = 9.81 [m/s²]
Now replacing:
![F=28*9.81\\F=274.68[N]](https://tex.z-dn.net/?f=F%3D28%2A9.81%5C%5CF%3D274.68%5BN%5D)
The ball rolled for 13.2 s
<h3>Further explanation</h3>
Speed is scalar and no direction

A bowling ball rolls 33 m, with average speed = 2.5 m/s
So elapsed time :
