<span>82.0 kg
I am going to assume that there is a typo for the number of joules of energy. Doing a google search for this exact question showed this question multiple times with a value of 4942 joules which makes sense given how close the "o" key is to the "9" key. Because of this, I will assume that the correct value for the number of joules is 4942. With that in mind, here's the solution.
The gravitational potential energy is expressed as the mass multiplied by the height, multiplied by the local gravitational acceleration. So:
E = MHA
Solving for M, the substituting the known values and calculating gives:
E = MHA
E/(HA) = M
4942/(6.15*9.8) = M
4942/60.27 = M
81.99767712 = M
Rounding to 3 significant figures gives 82.0 kg</span>
Answer: D. A wave with a shorter wavelength is always faster than one with a longer wavelength
Explanation: "Imagine two sets of waves that have the same speed. <u><em>If one set has a longer wavelength, it will have a lower frequency (more time between waves). If the other set has a shorter wavelength, it will have a higher frequency</em></u> (less time between waves). Light moves even faster AND has shorter wavelengths."
Why it's not C: "The number of complete wavelengths in a given unit of time is called frequency (f). <em><u>As a wavelength increases in size, its frequency and energy (E) decrease</u></em>. From these equations you may realize that as the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer."
Why it's not B: "The frequency does not change as the sound wave moves from one medium to another. Since the speed changes and the frequency does not, the wavelength must change."
Why it's not A: "Do loud sounds travel faster than soft sounds? No. Both travel at the same speed The speed depends on the medium it passes through. Louder sounds are simply sound waves with higher amplitude traveling at the same speed."
The answer is B. 1,4, and 6
Plants in general I think.
photosynthetic organisms.
Answer:
The mass of the object on the Moon (and anywhere else) is about 30.61kg. Please see more detail below.
Explanation:
Weight is the gravitational force exerted on the object and is a function of mass and gravitational acceleration:
(weight) = (mass) x (gravitational acceleration)
We are to find the mass, knowing the weight on Earth to be 300N:
(mass) = (weight on Earth) / (gravitational acceleration on Earth) = 300N / 9.8 m/s^2 = 30.61 kg
The mass of the object is 30.61kg.
The mass of the object is independent of gravity. Therefore the answer to the question "What is its mass on the Moon" is 30.61kg.
If the question were what is its weight on the Moon, the answer would be
(weight on Moon) = (mass) x (grav.accel. on Moon) = 30.61kg x 1.62 m/s^2 = 49.59N
which is about 1/6 of the object's weight on the Earth.