Answer:
a) 5.851× 10¹⁰m/s²
b) 2.411×10⁻¹¹s
c) 1.70×10⁻¹¹m
d) 1.661×10⁻²⁷KJ
Explanation:
A proton in the field experience a downward force of magnitude,
F = eE. The force of gravity on the proton will be negligible compared to the electric force
F = eE
a= eE/m
= 1.602×10⁻¹⁹ × 610/1.67×10⁻²⁷
= 5.851× 10¹⁰m/s²
b)
V = u + at
u= 0
v= 1.4106m/s
v= (0)t + at
t= v/a
= 1.4106m/s/5.851 ×10¹⁰
= 2.411×10⁻¹¹s
c)
S = ut + at²
= (o)t + 5.851×10¹⁰×(2.411×10⁻¹¹)²
= 1.70×10⁻¹¹m
d)
Ke = 1/2mv²
= (1.67×10⁻²⁷×)(1.4106)²/2
= 1.661×10⁻²⁷KJ
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
To determine the diameter of the earth in metres first multiply the original value by 2.
6378 X 2 = 12 756 km.
Then convert km - m
1 km = 1000 m
12 756 km = ? m
12 756 • 1000 = 12 756 000 = 12 756 000 m or 1.2756 X 10 ^ 7 m
The final solution for the diameter is 1.2756 X 10 ^ 7 m.