Answer:
i think..its fraction that its have multiple fractions on it..if you minus the 397 000-355 it should be 381+ so i say if you get the 5 multiply it by 9!! so you will get it!
Explanation:
HOPE IT HELPS!!
C) total linear momentum of the ball and cannon is conserved.
Basically it happens that in the beginning before there is a momentum acting on the two bodies, these are a unique system. Here the total momentum of the System is 0. However, when the positive momentum of the cannonball is added, the system will be immediately affected by a negative momentum which will pull back the cannon. Could this be extrapolated as a condition of Newton's third law.
Heavy crate sits at rest on the floor of a warehouse. you push on the crate with a force of 400 N, and it doesn't budge. The magnitude of the friction force on the crate in Newton is 400N
This is due to Friction force, which is defined as the resisting force that acts on a body when it is at rest (Static friction) or when it is in motion (Kinetic friction).
When a force is applied on a stationary body, the force of static friction starts to act on the body which prevents any relative motion between the object and surface. The magnitude of friction increases up to μsN, where μs is the coefficient of static friction. As the crate didn't budge, it means the amount of force applied was less than μsN. Hence the force applied was canceled by an equal and opposite amount of frictional force which was equal to 400N.
Learn more about frictional force here
brainly.com/question/1714663
#SPJ4
The
sun is a ball of hot gases containing different kinds of elements at different
cores. It has a very high temperature that radiates all throughout the Milky
Way galaxy. The sun has three main parts; photosphere, chromospheres
and corona. The outer core of a star located at the chromospheres contains
mostly of hydrogen. Inside the hydrogen is helium then carbon, oxygen, neon,
magnesium silicon and the inert gas. The photosphere is scattered by the loose electrons in the corona’s plasma.
The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g
<u>Explanation:</u>
Given,
Temperature, T = 0°C
Initial mass, Mi = 62kg
Speed, s = 5.48m/s
Distance, x = 26.8m
Friction is present.
Mass of ice melted = ?
We know,
The amount of energy required for the melting of ice is exactly equal to the initial kinetic energy of the block of ice
and

Therefore, 
KE = 930.94 Joules
Ice melting lateral heat is 334 kJ/kg = 334000 J/kg.
Therefore, the melted mass of the ice = 930.94 / 334000 = 0.00278 kg = 2.78 g.
Thus, The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g