The equation to be used is the derived formulas for rectilinear motion at a constant acceleration. The formula for acceleration is
a = (v - v₀)/t
where
v and v₀ are the initial and final velocities, respectively
t is the time
a is the acceleration
Since it started from rest, v₀ = 0. Using the formula:
0.15 m/s² = (v - 0)/[2 minutes*(60 s/1 min)]
Solving for v,
v = 18 m/s
Answer:
True
Explanation:
Nonrenewable resources ARE limited in supply. They don't get replaced at the speed they get made. For example: we pump crude oil from the ground at a rate that makes it impossible for crude oil to be replaced. Crude oil takes millions of years to produce
Answer:
Volume of balloon = 1000 cm^3
Explanation:
The head of a normal person can be assumed as a sphere with radius 10 cm.
Volume of sphere
, where r is the radius.
We have approximate radius = 10 cm.
Approximate volume of head 
In the given options the closest value to the approximate volume is 1000 cm^3.
So, volume of head = Volume of balloon = 1000 cm^3
When you are in free fall, the force of gravity is stronger than your velocity perpendicular to where you're falling, and you move at a constant speed downwards.
Under feelings of weightlessness, you are still being pulled by gravity, but your perpendicular velocity and distance from the source can cancel each other out.
Answer:
The current decreases.
Explanation:
Current and resistance are inversely proportional. The equation connecting current, resistance and voltage is
, where V is voltage, I is current and R is resistance.
Rearranging this equation, you get:
and

If the value of voltage in both equations remains constant, and the value of R decreases, the value of I will increase. Conversely, if in the second equation
, the value of V remains constant the value of I decreases, then the value of R, resistance will increase.
Thus, it can be seen that the current will decrease as resistance increases and vice versa.