<span>Your answer should be water flows without turning on a facet. Hope this helps!
</span>
Answer:
2.2 s
Explanation:
Using the equation for the period of a physical pendulum, T = 2π√(I/mgh) where I = moment of inertia of leg about perpendicular axis at one point = mL²/3 where m = mass of man = 67 kg and L = height of man = 1.83 m, g = acceleration due to gravity = 9.8 m/s² and h = distance of leg from center of gravity of man = L/2 (center of gravity of a cylinder)
So, T = 2π√(I/mgh)
T = 2π√(mL²/3 /mgL/2)
T = 2π√(2L/3g)
substituting the values of the variables into the equation, we have
T = 2π√(2L/3g)
T = 2π√(2 × 1.83 m/(3 × 9.8 m/s² ))
T = 2π√(3.66 m/(29.4 m/s² ))
T = 2π√(0.1245 s² ))
T = 2π(0.353 s)
T = 2.22 s
T ≅ 2.2 s
So, the period of the man's leg is 2.2 s
Answer:
q=1.7346×10⁻⁶C
Explanation:
Since the electric field is perpendicular to the bottom and top of the cube,the total flux is equals the flux over the top of surface plus the flex over the lower surface
Ф(total)=Ф₃₀₀+Ф₂₃₀
But the flux is given by Ф=E.A=EACos(θ) where θ is the angle between Area vector and electric field
So
Ф(total)=E₃₀₀A Cos(180)+E₂₃₀ACos(0)
Ф(total)=A(E₃₀₀ - E₂₃₀)
The total flux is given by Gauss Law as:
Ф(total)=q/ε₀
q=ε₀Ф(total)
q=ε₀(A(E₃₀₀ - E₂₃₀))
Substitute the given values
q=(8.85×10⁻¹²){(70²)(100 - 60)}
q=1.7346×10⁻⁶C
Closer u get 2 the center the more balanced out your weight will b