Answer:
-207,4 kJ = ΔH∘fHNO₃(aq)
Explanation:
Ussing Hess's law it is possible to obtain the enthalpy of a reaction or a product by the sum of different half-reactions.
<em>(1) </em>3NO₂(g) + H₂O(l) → 2HNO₃(aq) + NO(g) ΔH° = -137.3 kJ
<em>(2) </em>2NO(g) + O₂(g) → 2NO₂(g) ΔH° = -116.2 kJ
<em>(3) </em>4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O(l) ΔH° = -1165.2 kJ
The sum of ²/₃ (1) + (2) gives:
⁴/₃NO(g) + ²/₃H₂O(l) + O₂(g) → ⁴/₃HNO₃(aq) ΔH° = ²/₃ (1) + (2) = -207,7 kJ
This reaction + ¹/₃ (3) produce:
⁴/₃NH₃(g) + ⁸/₃O₂(g) → + ⁴/₃H₂O(l) + ⁴/₃HNO₃(aq) ΔH° = -207,7 kJ + ¹/₃ (3) = -596,1 kJ
This ΔH° is = ⁴/₃ΔH∘fH₂O(l) + ⁴/₃ΔH∘fHNO₃(aq) - (⁴/₃ΔH∘fNH₃(g) + ⁸/₃ΔH∘fO₂(g))
As: NH₃(g) ΔH∘f = -46.1 kJ; H₂O(l) ΔH∘f = -285.8 kJ; O₂(g) ΔH∘f =0kJ:
-596,1 kJ = -⁴/₃285,8kJ +⁴/₃ΔH∘fHNO₃(aq) - (-⁴/₃46,1kJ + 0 kJ)
-276,5 kJ = ⁴/₃ΔH∘fHNO₃(aq)
<em>-207,4 kJ = ΔH∘fHNO₃(aq)</em>
<em></em>
I hope it helps!