Answer:
they are equal
Explanation:
the Law of Conservation of Mass states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change
Answer:
As the Earth rotates, it also moves, or revolves, around the Sun. ... As the Earth orbits the Sun, the Moon orbits the Earth. The Moon's orbit lasts 27 1/2 days, but because the Earth keeps moving, it takes the Moon two extra days, 29 1/2, to come back to the same place in our sky.
Explanation:
There are types of lens; concave and convex lens.
The concave lens is a lens which has an inward curve in the middle, that is, the edges of the curve are thicker than the center of the lens, because of this, any light that enter the lens will spread out [diverge]. An image will look smaller and upright when viewed by a concave lens. Image formed by concave lens are usually VIRTUAL.
A concave lens will produce a real image ONLY if the object is located beyond the focal point of the lens.
A convex lens is a converging lens, this is because, the center of the lens is thicker than its edges. Any ray of light that passes through the lens will converge at the middle of the lens at point called principal focus. A convex lens produce a VIRTUAL image when the object is placed infront of the focal point. The virtual image formed is always magnified and upright.<span />
Answer:C. The value of n for H+(H2O)n can be calculated for almost all solutions.
Explanation:
An hydrate can be described as a substance that contains water or with an hydrogen bonded water molecule group.
The hydrate group doesn't necessarily have a fixed formula.
Answer:
2.04 x 10²⁴ molecules
Explanation:
Given parameters:
Mass of Be(OH)₂ = 145.5g
To calculate the number of molecules in this mass of Be(OH)₂ we follow the following steps:
>> Calculate the number of moles first using the formula below:
Number of moles = mass/molarmass
Since we have been given the mass, let us derive the molar mass of Be(OH)₂
Atomic mass of Be = 9g
O = 16g
H = 1g
Molar Mass = 9 + 2(16 + 1)
= 9 + 34
= 43g/mol
Number of moles = 145.5/43 = 3.38mol
>>> We know that a mole is the amount of substance that contains Avogadro’s number of particles. The particles can be atoms, molecules, particles etc. Therefore we use the expression below to determine the number of molecules in 3.38mol of Be(OH)₂:
Number of
molecules= number of moles x 6.02 x 10²³
Number of molecules= 3.38 x 6.02 x 10²³
= 20.37 x 10²³ molecules
= 2.04 x 10²⁴ molecules