Answer : The volume of sodium benzoate and benzoic acid solution mixed to prepare this buffer should be, 29.0 mL and 71 mL respectively.
Explanation :
Let the volume of sodium benzoate (salt) be, x
So, the volume of benzoic acid (acid) will be, (100 - x)
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
Now put all the given values in this expression, we get:

x = 29.0
The volume of sodium benzoate = x = 29.0 mL
The volume of benzoic acid (acid) = (100 - x) = (100 - 29.0) = 71 mL
Thus, the volume of sodium benzoate and benzoic acid solution mixed to prepare this buffer should be, 29.0 mL and 71 mL respectively.
Answer:
Their components
Explanation:
It's simple enough, the components in carbon dioxide and carbon monoxide both have at least one carbon and one oxygen atom. However, they differ because their amount in the molecules is different, and that is because of their covalent bonds. Carbon dioxide has to double electron bonds while carbon monoxide has a rare triple electron bond.
Al (+3)
NO3 (-1)
So basically you need 3 NO3 and one Al to produce Al (NO3)3
This is because, only <span> weak van der Waals forces or weak London dispersion forces are present between the atoms of the </span><span>noble gases.
Hope this helps!</span>
Answer:
Explanation:
a )
3NO₂(g) + H₂O(l) — -→ 2HNO₃(aq) + NO(g)
3 x 46 g 18 g 2 x 63 g 30 g
138 g of NO₂ requires 18 g of H₂O
28 g of NO₂ requires ( 18 / 138) x 28
= 3.65 g of H₂O.
b )
18 g of H₂O produces 30 g of NO gas
15.8 g of H₂O produces ( 30/18 ) x 15.8
= 26.33 g of NO gas .
c )
138 g of NO₂ produces 126 g of HNO₃
8.25 g of NO₂ produces (126 / 138 ) x 8.25
= 7.53 g of HNO₃