Same things but with different numbers of neutrons in nuclei
A wave with low energy will also have long wavelengths and low frequencies.
The given in a single photon of a wave is given by Planck's equation:
E = hc/λ
and
E = hf
Where λ is the wavelength and f is the frequency of the photon. This means that energy is directly proportional to the frequency and inversely proportional to the wavelength. Thus, it is visible that photons with a lower frequency and a longer wavelength will have a lower energy.
This is true. Elements past lead are radioactive, because the repulsive force of the protons cannot be overpowered by the “gluing” ability of neutrons (remember, likes repel). As more and more protons are added, generally, the elements become more unstable; for example, Bismuth, right next to lead on the Periodic Table, is radioactive, but the half life of this element is about a billion times longer than the current age of the universe, but Oganesson, element number 118, has a half life of fractions of a second.
It takes more energy to breakdown the bonds