1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pantera1 [17]
3 years ago
9

What is the energy (in joules) and the wavelength (in meters) of the line in the spectrum of hydrogen that represents the moveme

nt of an electron from Bohr orbit with n = 2 to the orbit with n = 5? In what part of the electromagnetic spectrum do we find this radiation?
Physics
1 answer:
soldi70 [24.7K]3 years ago
8 0

Answer:

The energy is 4.57x10^{-19} J and the wavelength is 4.34x10^{-7}m for the line in the spectrum of hydrogen that represents the movement of an electron from Bohr orbit with n = 2 to the orbit with n = 5.

<em>In what part of the electromagnetic spectrum do we find this radiation? </em>

In the Ultraviolet part of the electromagnetic spectrum.

Explanation:

The energy of the absorbed photon can be known by the difference in energy between the two states in which the transition is happening (In this case from n = 2 to n = 5):

E = E_{upper}-E_{lower}   (1)

The permitted energy for the atom of hydrogen, according with the Bohr's model, is defined as:

E_{n} = -\frac{13.606 eV}{n^{2}}   (2)

Or it can be expressed in Joules, since 1eV = 1.60x10^{-19}J

E_{n} = -\frac{2.18x10^{-18} J}{n^{2}}   (3)

Where the value -2.18x10^{-18} represents the energy of the ground state¹ and n is the principal quantum number.

For the case of n = 2:

E_{2} = -\frac{2.18x10^{-18} J}{(2)^{2}}

E_{2} = -5.45x10^{-19} J

For the case of n = 5:

E_{5} = -\frac{2.18x10^{-18} J}{(5)^{2}}

E_{5} = -8.72x10^{-20} J

Replacing those values in equation (1) it is gotten:

E = -8.72x10^{-20} J-(-5.45x10^{-19} J )

E = 4.57x10^{-19} J

The wavelength can be determined by means of the Rydberg formula:

\frac{1}{\lambda} = R(\frac{1}{n_{l}^{2}}-\frac{1}{n_{u}^{2}})  (4)

Where R is the Rydberg constant, with a value of 1.097x10^{7}m^{-1}

For this particular case n_{l} = 2 and n_{u} = 5:

\frac{1}{\lambda} = 1.097x10^{7}m^{-1}(\frac{1}{(2)^{2}}-\frac{1}{(5)^{2}})

\frac{1}{\lambda} = 1.097x10^{7}m^{-1}(0.21)

\frac{1}{\lambda} = 2303700m^{-1}

\lambda = \frac{1}{2303700m^{-1}}

\lambda = 4.34x10^{-7}m

So the energy is 4.57x10^{-19} J and the wavelength is 4.34x10^{-7}m for the line in the spectrum of hydrogen that represents the movement of an electron from Bohr orbit with n = 2 to the orbit with n = 5.

<em>In what part of the electromagnetic spectrum do we find this radiation? </em>

In the Ultraviolet part of the electromagnetic spectrum.

Key terms:

¹Ground state: State of minimum energy.  

You might be interested in
Two rigid tanks of equal size and shape are filled with different gases. The tank on the left contains oxygen, and the tank on t
fredd [130]

Answer:

The number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.

Explanation:

Given:

Molar mass of oxygen, M_O=32

Molar mass of hydrogen, M_H=2

We know ideal gas law as:

PV=nRT

where:

P = pressure of the gas

V = volume of the gas

n= no. of moles of the gas molecules

R = universal gs constant

T = temperature of the gas

∵n=\frac{m}{M}

where:

m = mass of gas in grams

M = molecular mass of the gas

∴Eq. (1) can be written as:

PV=\frac{m}{M}.RT

P=\frac{m}{V}.\frac{RT}{M}

        as: \frac{m}{V}=\rho\ (\rm density)

So,

P=\rho.\frac{RT}{M}

Now, according to given we have T,P,R same for both the gases.

P_O=P_H

\rho_O.\frac{RT}{M_O}=\rho_H.\frac{RT}{M_H}

\Rightarrow \frac{\rho_O}{32}=\frac{\rho_H}{2}

\rho_O=16\rho_H

∴The molecules of oxygen are more densely packed than the molecules of hydrogen in the same volume at the same temperature and pressure. So, <em>the number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.</em>

5 0
3 years ago
Question 5 (2 points)
Radda [10]

Answer:

Increase the work being done or decrease the time in which the work is completed

Explanation:

I got it right on the quiz i just took :)

5 0
3 years ago
where would information on the chemical and physical properties of a specific chemical be located in a laboratory or in the work
goldenfox [79]

Answer:

Both

Explanation:

8 0
3 years ago
How is energy transformed to chemical energy?
morpeh [17]

it is transfred through the basics

6 0
3 years ago
A stone is dropped from the top of a tower. What is its velocity after 3.0 seconds?
kap26 [50]

For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth. 

The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet.  That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.

3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s. 

That's the vertical component of its velocity.  The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.

5 0
3 years ago
Other questions:
  • How did some U.S. citizens oppose the Vietnam war?
    6·1 answer
  • A(n) 93 kg clock initially at rest on a horizontal floor requires a(n) 617 N horizontal force to set it in motion. After the clo
    10·1 answer
  • The rate at which light energy is radiated from a source is measured in which of the following units?
    14·2 answers
  • A crate is given a push across a horizontal surface. The crate has a mass m, the push gives it an initial speed of 1.90 m/s, and
    5·1 answer
  • The _____(height or width) of a sound wave determines its _____(loudness or pitch).
    8·2 answers
  • Make a rough estimate of the number of quanta emitted in one second by a 100 W light bulb. Assume that the typical wavelength em
    12·1 answer
  • A roller-coaster car rolls down a frictionless track, reaching speed v0 at the bottom. If you want the car to go twice as fast a
    12·1 answer
  • Why do your legs appear shorter when standing in water
    7·1 answer
  • Explain how the forces need to change so the aeroplane can land
    8·1 answer
  • You have two small spheres, each with a mass of 2.40 grams, separated by a distance of 10.0 cm. You remove the same number of el
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!