Answer:
Increasing length increases resistance
increasing cross sectional area reduces the resistance
.
Explanation:
The formula for resistance of an object is
where r is resistance, d is resistivity of the material, l is length of material and a is cross sectional area of the object. This equation shows us that resistance is directly proportional to length and inversely proportional to cross sectional area. Hence, increasing length increases resistance while increasing cross sectional area reduces the resistance.
If these 2 variables are varied to the same extent, the net effect can be zero on the resistance.
Answer:
a) Δx = 180.59 m
b) T = 6001 N
Explanation:
a)
According to Newton's second law, which says that acceleration is directly proportional to the net force, the equation is equal to:
ΣF = m*a = T-f
Clearing a, and solving:
a = (T-f)/m = (T-f)/2*m = (12000-5800)/(2*700) = 4.43 m/s^2
To evaluate the final speed the following equation will be used:
vf^2 = vi^2 + 2*a*Δx = 0 + 2*a*Δx = 2*a*Δx
Clearing Δx:
Δx = vf^2/2*a = (40 m/s)^2/(2* 4.43 m/s^2) = 180.59 m
b)
The tension is equal to:
T = m*a + f = (700 kg * 4.43 m/s^2) + 2900 N = 6001 N
Answer:
D) The bicycle is not in motion.
Explanation:
Study the position-time graph for a bicycle.
Which statement is supported by the graph?
A) The bicycle has speed but not velocity.
B) The bicycle is moving at a constant velocity.
C) The bicycle has a displacement of 3 m.
D) The bicycle is not in motion.
Solution:
Velocity is the time rate of change of displacement. It is the ratio of displacement to time taken.
Speed is the time rate of change of distance. It is the ratio of distance to time taken.
From the position-time graph, we can see that the bicycle has a constant positon of 3 m for the whole of the time. That is the position remains 3 m even as the time changes. Therefore, we can conclude that the bicycle is not in motion.