<h3>
Answer:</h3>
0.0253 mol H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 0.456 g H₂O (water)
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.025305 mol H₂O ≈ 0.0253 mol H₂O
atomic mass=percentage of isotope a * mass of isotope a + percentage of isotope b * mass of isotope b+...+percentage of isotope n * mass of isotope n.
Data:
mass of isotope₁=267.8 u
percentage of isotope₁=90.3%
mass of isotope₂=270.9 u
percentage of isotope₂=9.7%
Therefore:
atomic mass=(0.903)(267.8 u)+(0.097)(270.9 u)=
=241.8234 u + 26.2773 u≈268.1 u
Answer: the mass atomic of this element would be 268.1 u
Answer:
Explanation:
In a chemical equation, the reactants are written on the left, and the products are written on the right. Chemical equations should contain information about the state properties of products and reactants, whether aqueous (dissolved in water — aq), solid (s), liquid (l), or gas (g). hope that helped
Answer:
A. London dispersion
Explanation:
London dispersion force is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.