Answer:
The wavelength for the transition from n = 4 to n = 2 is<u> 486nm</u> and the name name given to the spectroscopic series belongs to <u>The Balmer series.</u>
Explanation
lets calculate -
Rydberg equation- 
where ,
is wavelength , R is Rydberg constant (
),
and
are the quantum numbers of the energy levels. (where
)
Now putting the given values in the equation,


Wavelength 
=
= 486nm
<u> Therefore , the wavelength is 486nm and it belongs to The Balmer series.</u>
Answer: 2.48×10^-17 J
Explanation:
Given the following :
Wavelength = 8nm (8 x 10^-9 m)
Energy(e) of X-ray =?
Energy=[speed of light(c) × planck's constant (h)] ÷ wavelength
Speed of light = 3×10^8m/s
Planck's constant = 6.626×10^-34 Js
Wavelength = 8 x 10^-9 m
Energy = [(3×10^8) * (6.626×10^-34)] / 8 x 10^-9
Energy = [19.878×10^(8-34)] / 8 x 10^-9
Energy = 2.48475 × 10^(-26+9)
Energy = 2.48×10^-17 J
Answer:
The second one is the answer
It's back wards lol you need to take it right
<u>Answer:</u>
<u>For a:</u> The balanced equation is 
<u>For c:</u> The balanced equation is 
<u>Explanation:</u>
A balanced chemical equation is one where all the individual atoms are equal on both sides of the reaction. It follows the law of conservation of mass.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of both
and
and 3 in front of 
For the balanced chemical equation:

The given balanced equation follows:

The given equation is already balanced.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of 
For the balanced chemical equation:
The given balanced equation follows:

The given equation is already balanced.