Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>
Answer:
%age Yield = 51.45 %
Solution:
Step 1: Convert Kg into g
68.5 Kg CO = 68500 g CO
8.60 Kg H₂ = 8600 g
Step 2: Find out Limiting reactant;
The Balance Chemical Equation is as follow;
CO + 2 H₂ → CH₃OH
According to Equation,
28 g (1 mol) CO reacts with = 4 g (2 mol) of H₂
So,
68500 g CO will react with = X g of H₂
Solving for X,
X = (68500 g × 4 g) ÷ 28 g
X = 9785 g of H₂
It shows 9785 g H₂ is required to react with 68500 g of CO but we are provided with 8600 g of H₂ which is less than required. Therefore, H₂ is provided in less amount hence, it is a Limiting reagent and will control the yield of products.
Step 3: Calculate Theoretical Yield
According to equation,
4 g (2 mol) H₂ reacts to produce = 32 g (1 mol) Methanol
So,
8600 g H₂ will produce = X g of CH₃OH
Solving for X,
X = (8600 g × 32 g) ÷ 4 g
X = 68800 g of CH₃OH
Step 4: Calculate %age Yield
%age Yield = Actual Yield ÷ Theoretical Yield × 100
Putting Values,
%age Yield = 3.54 × 10⁴ g ÷ 68800 g × 100
%age Yield = 51.45 %
As a conjugate base of a strong acid,ClO4-would be classified as having a negligible basicity. The basicity of a chemical species is normally expressed by the acidity of the conjugate acid. The basicity of an acid is the number of hydrogen ions, which can be produced by one molecule of the acid.
Answer:
a) 2KOH + NiSO₄ → K₂SO₄ + Ni(OH)₂
b) Ni(OH)₂
c) KOH
d) 0.927 g
e) K⁺=0.067 M, SO₄²⁻=0.1 M, Ni²⁺=0.067 M
Explanation:
a) The equation is:
2KOH + NiSO₄ → K₂SO₄ + Ni(OH)₂ (1)
b) The precipitate formed is Ni(OH)₂
c) The limiting reactant is:


From equation (1) we have that 2 moles of KOH react with 1 mol of NiSO₄, so the number of moles of KOH is:
Hence, the limiting reactant is KOH.
d) The mass of the precipitate formed is:
e) The concentration of the SO₄²⁻, K⁺, and Ni²⁺ ions are:


I hope it helps you!
Answer:
295.7 mL of 24% trichloroacetic acid (tca) is needed .
Explanation:
Let the volume of 24% trichloroacetic acid solution be x
Volume of required 10% trichloroacetic acid solution =8 bottles of 3 ounces
= 24 ounces = 709.68 mL
(1 ounces = 29.57 mL)
Amount of trichloroacetic acid in 24% solution of x volume of solution will be equal to amount of trichloroacetic acid in 10% solution of volume 709.68 mL.

x = 295.7 mL
295.7 mL of 24% trichloroacetic acid (tca) is needed .