Answer:
Bar graph
Explanation:
each day collects data so a bar graph would work.
Answer:
(a) ω = 1.57 rad/s
(b) ac = 4.92 m/s²
(c) μs = 0.5
Explanation:
(a)
The angular speed of the merry go-round can be found as follows:
ω = 2πf
where,
ω = angular speed = ?
f = frequency = 0.25 rev/s
Therefore,
ω = (2π)(0.25 rev/s)
<u>ω = 1.57 rad/s
</u>
(b)
The centripetal acceleration can be found as:
ac = v²/R
but,
v = Rω
Therefore,
ac = (Rω)²/R
ac = Rω²
therefore,
ac = (2 m)(1.57 rad/s)²
<u>ac = 4.92 m/s²
</u>
(c)
In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:
Centripetal Force = Frictional Force
m*ac = μs*R = μs*W
m*ac = μs*mg
ac = μs*g
μs = ac/g
μs = (4.92 m/s²)/(9.8 m/s²)
<u>μs = 0.5</u>
The car bounces off and moves in the opposite direction
Answer:
The difference is 7.6 grams.
Explanation:
In mathematics the difference of two numbers is express as the subtraction between them:

So to find out the difference between the two measured masses, a will be represented by 123.6 grams since is the bigger number, and b by 115.972 grams.
Therefore, it is get:

<u>Hence, the difference is 7.6 grams. </u>
The result of 7.628 will be expressed as 7.6 to have the correct number of significant figures.
Notice how that can be express in units of kilograms too since there is 1000 gram in 1 kilogram:
⇒ 
Answer:
The acceleration would be 3.455.