1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erma4kov [3.2K]
3 years ago
6

A stone is dropped into a river from a bridge 41.7 m above the water. Another stone is thrown vertically down 1.80 s after the f

irst is dropped. Both stones strike the water at the same time. What is the initial speed of the second stone?
Physics
1 answer:
hram777 [196]3 years ago
5 0

Answer:

31.75 m/s

Explanation:

h = 41.7 m

Let the initial velocity of the second stone is u

Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.

For first stone:

Use second equation of motion

h=ut+\frac{1}{2}gt^2

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7

So, 41.7= 0 + 0.5 x 9.8 x t^2

41.7 = 4.9 t^2

t = 2.92 s ..... (1)

For second stone:

Use second equation of motion

h=ut+\frac{1}{2}gt^2

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity

h=u\left ( t-1.8 \right )+4.9\left ( t-1.8 \right )^2    .... (2)

By equation the equation (1) and (2), we get

41.7=1.12 u +4.9 \times 1.12^{2}

u = 31.75 m/s

You might be interested in
Which literary device portrays a character's reflections?
DochEvi [55]
Of the literary devices you provided to choose from, snap hots and thought shots are not even devices so they fall off the list.

sensory language can explain the senses the character is using - helping figure out his reflections,

but figuratve language can helop the best. the character says something figuratively and we can analyze what they meant to find out what they were thinking
6 0
3 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
1. A uniform magnetic field is directed vertically upwards. In which direction in this field should an alpha particle be project
max2010maxim [7]

Answer:

1. Fleming's left hand rule

2. It must be projected towards the east

Explanation:

Fleming's left-hand rule states that; When a current-carrying conductor is placed in an external magnetic field, the conductor experiences a force perpendicular to both the field and to the direction of the current flow. This rule was first put forward by John Ambrose Fleming in the later part of the nineteenth century.

Hence if the thumb, fore finger and middle finger of the lefthand are held mutually at right angles to each other; the thumb shows the direction of motion, the fore finger shows the direction of the field while the middle finger shows the direction of the current.

Hence, if the alpha particle is projected eastwards(at right angles) to the uniform magnetic field, it will be deflected southwards in the magnetic field.

3 0
3 years ago
At a location near the equator, the earth’s magnetic field is horizontal and points north. An electron is moving vertically upwa
Elan Coil [88]

Answer:

2. west

Explanation:

Given an electron is moving vertically upward from ground.

Now Fleming right hand rule state that: make L shape with thumb and index finger then point middle finger perpendicular to index and thumb.Then index finger points in the direction of moving charge , middle finger points in the direction of the magnetic field and thumb points in the direction of the magnetic force.

According to Fleming right hand rule the direction of the magnetic that acts on the electron is west.

5 0
3 years ago
Which of these best describes how an appropriate star chart is selected to locate objects in the sky?
Sergio [31]
The layout of the stars in the sky is determined by the date, time of night, and your location (mainly latitude). So to pick the best star chart, you should go with the one that's closest to the present date and your location, then make allowance for what time it is. Everything in the sky moves about a degree every 4 minutes.
6 0
3 years ago
Read 2 more answers
Other questions:
  • A driver of a car enters a new 110 km/h speed zone on the highway. The driver begins to accelerate immediately and reaches 110 k
    10·1 answer
  • Why do stretching exercises increase flexibility more than cardio exercises?
    11·1 answer
  • Can someone help me?!!!!!
    11·1 answer
  • What is Ethyl butyrate used for
    7·1 answer
  • What is the importance of antacid in human health​
    10·2 answers
  • If Goku sprints and tackles a large metal crate doing 18002 J of work over the course of
    11·1 answer
  • In each of the following cases, determine where the car has no
    15·1 answer
  • 100!!! POINTS PLZ HELPPPPPP
    10·1 answer
  • A car has a mass of 1000 kg. What is the acceleration produced by a force of 2000 N?
    5·1 answer
  • Ten students stand in a circle and are told to make a transverse wave. What best describes the motion of the students? Each stud
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!