Answer:
The correct answer is - 4.
Explanation:
As we known and also given that the total of the superscripts that is mass numbers, A in the reactants and products must be the same.The mass of products A can understand and calculated by this -
The sum of the product mass number of products = mass of reactant
237Np93 →233 Pa91 +AZX is the equation,
Solution:
Mass of reactants = 237
Mass of products are - Pa =233 and A = ?
233 + A = 237
A = 237 - 233
A = 4
So the equation will be:
237Np93 →233 Pa91 +4He2 (atomic number Z = 2 ∵ difference in the atomic number of reactant and products)
Answer:
Explain some of the uses of metals based on their properties.
Explanation:
Metals have a shiny or metallic luster and are good conductors of heat and electricity, they can be bent and pounded in various shapes, so they can be used on cars, coins, some pipes, keys, and and a flag.
Answer:
2666.7 hours
Explanation:
The key to solve this problem is that we are given the propane gas consumed in one hour by giving us the information of the volume consumed at 1 atm, 298 K (25 +273). Using the gas law we can calculate the rate of consumption of propane per hour, and from here we can calculate its mass and converting it to gallons and finally diving the 400 gallos by this number.
PV = nRT ∴ n = PV/RT
n = 1 atm x 165 L/ (0.08206 Latm/kmol x 298 K ) = 6.75 mol propane
Mass propane :
6.75 mol x 44 g/mol = 296.88 g
convert this to Kg:
296.88 g/ 1000 g/Kg = 0.30 Kg
calculate the volume in liters this represents by dividing by the density:
0.30 Kg / 0.5077 Kg/L = 0.59 L
changing this to gallons
0.59 L x 1 gallon/3.785 L = 0.15 gallon
and finally calculate how many hours the 400 gallons propane tank will deliver
400 gallon/ 0.15 gallon/hr = 2666.7 hr
The products of reaction are ZnSO4 and H2. Since ZnSO4 is in aqueous form (aq), therefore only H2 and water vapor contributes to the overall total pressure in the system.
Total Pressure = 764 torr = H2 partial pressure + Water partial pressure
Since Water partial pressure is 26.74 torr so,
H2 partial pressure = 737.26 torr = 0.97 atm
Answer:
119.5 J
Explanation:
First we <u>calculate the temperature difference</u>:
- ΔT = 100 °C - 50 °C = 50 °C
Then we can <u>calculate the heat released</u> by using the following formula:
Where q is the heat, Cp is the specific heat, ΔT is the temperature difference and m is the mass.
We <u>input the data</u>:
- q = 0.239 J/g°C * 50 °C * 10.0 g