Answer:
bromine (Br)
Explanation: Iron enters into a reaction with substances of different classes, and interacts with oxygen, carbon, phosphorus, halogens (bromine, iodine, fluorine and chlorine), and also nitrogen. These are not all the reactions of iron – this metal reacts with many elements.
1 hectoliter is 26.4172
1 kiloliter is 264.172
<span>Consider two solutions: solution X has a pH of 4; solution Y has a pH of 7. From this information, we can reasonably conclude that </span>the concentration of hydrogen ions (H⁺) or hydronium ions (H₃O⁺) in solution X is thousand times as great as the concentration of hydrogen ions or hydronium ions in solution Y.
Solution X: c(H⁺) = 10∧-pH = 10⁻⁴ mol/L = 0,0001 mol/L.
Solution Y: c(H⁺) = 10⁻⁷ mol/L = 0,0000001 mol/L.
0,0001 mol/L / 0,0000001 mol/L = 1000.
INFORMATION:
We must find the number of valence electrons for magnesium
STEP BY STEP EXPLANATION:
In order to know the number of valence electrons for Mg, we need to locate the element in the periodic table
Since Mg is in the second group of the periodic table, it has two valence electrons.
ANSWER:
B) 2
Answer:
Na₂₆F₁₁
Explanation:
We find the moles of the substance assuming 100 g of the substance is present. Why do we take 100 g? Because then the percent of sodium/fluorine, would be the g of sodium/fluorine respectively:
74.186 g Sodium | 1 mol Sodium/23 g => 3.2255 mol Na
25.814 g Fluorine | 1 mol Fluorine/19 g => 1.3586 mol F
Divide each by smallest number of moles:
3.2255/1.3586 = 2.37
1.3586/1.3586 = 1
Multiply by common number to get a smallest whole number:
2.37*11 = 26,
1*11 = 11
The empirical formula is Na₂₆F₁₁