Answer:
0.01932 L
Explanation:
First we <u>convert 105 mM to M</u>:
Next we <u>convert 552 mL to L</u>:
Then we use the following equation:
Where:
We<u> input the given data</u>:
- 3 M * V₁ = 0.105 M * 0.552 L
And <u>solve for V₁</u>:
The answer to this question is 5
Explanation:
We have to find the number of moles of N₂ that are present in a sample that has a volume of 40.0 L at STP.
STP means Standard Conditions of Temperature and Pressure. These conditions are 273.15 K and 1 atm. We know that 1 mol of N₂ will occupy 22.4 L. We can use that ratio to find the answer to our problem.
1 mol of N₂ = 22.4 L
moles of N₂ = 40.0 L * 1 mol/(22.4 L)
moles of N₂ = 1.79 mol
Answer: 1.79 moles of nitrogen are present.
Answer:
The amount of NO₂ that can be produced 8.533 g
Explanation:
According to question
2 NO(g) + O₂(g) → 2 NO₂(g)
Given
Moles of nitrogen monoxide = 0.377
Moles of oxygen = 0.278
Since 'NO' is the limiting reagent according to this ratio.
According to equation
2 moles NO reacts to form 2 moles NO₂
So, 0.1855 moles NO give = 0.1855 moles of NO₂
Mass of 1 mole NO₂ = 46 g/mole
Mass of 0.1855 moles = 46 x 0.1855 = 8.533 g
Gravitational <span>force between them</span>