Density= mass/volume
volume=mass/density
volume= 40.0g/1.114g per mL
volume= 35.90664273 mL
volume = 35.9 mL
<u>0.219 moles </u><u>moles are present in the flask when the </u><u>pressure </u><u>is 1.10 atm and the temperature is 33˚c.</u>
What is ideal gas constant ?
- The ideal gas constant is calculated to be 8.314J/K⋅ mol when the pressure is in kPa.
- The ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas.
- The combined gas law relates pressure, volume, and temperature of a gas.
We simple use this formula-
The basic formula is PV = nRT where. P = Pressure in atmospheres (atm) V = Volume in Liters (L) n = of moles (mol) R = the Ideal Gas Law Constant.
68F = 298.15K
V = nRT/P = 0.2 * 0.08206 * 298.15K / (745/760) = 4.992Liters
n = PV/RT = 1.1atm*4.992L/(0.08206Latm/molK * 306K)
n = 0.219 moles
Therefore, 0.219 moles moles are present in the flask when the pressure is 1.10 atm and the temperature is 33˚c.
Learn more about ideal gas constant
brainly.com/question/3961783
#SPJ4
Answer:
increased
Explanation:
I believe to be increased ,because the coal is a natural resource to be used.
i really hope it helps
Answer:
90.3 L
Explanation:
Given data:
Volume of water produced = 77.4 L
Volume of oxygen required = ?
Solution:
Chemical equation:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
It is known that,
1 mole = 22.414 L
There are 7 moles of oxygen = 7×22.414 = 156.9 L
There are 6 moles of water = 6×22.414 = 134.5 L
Now we will compare:
H₂O : O₂
134.5 : 156.9
77.4 : 156.9/134.5×77.4 =90.3 L
So for the production of 77.4 L water 90.3 L oxygen is required.