Answer:
The combined gas law states that the pressure of a gas is inversely related to the volume and directly related to the temperature. If temperature is held constant, the equation is reduced to Boyle's law. Therefore, if you decrease the pressure of a fixed amount of gas, its volume will increase.
Explanation:
Answer:
0.6749 M is the concentration of B after 50 minutes.
Explanation:
A → B
Half life of the reaction = 
Rate constant of the reaction = k
For first order reaction, half life and half life are related by:


Initial concentration of A = ![[A]_o=0.900 M](https://tex.z-dn.net/?f=%5BA%5D_o%3D0.900%20M)
Final concentration of A after 50 minutes = ![[A]=?](https://tex.z-dn.net/?f=%5BA%5D%3D%3F)
t = 50 minute
![[A]=[A]_o\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_o%5Ctimes%20e%5E%7B-kt%7D)
![[A]=0.900 M\times e^{-0.02772 min^{-1}\times 50 minutes}](https://tex.z-dn.net/?f=%5BA%5D%3D0.900%20M%5Ctimes%20e%5E%7B-0.02772%20min%5E%7B-1%7D%5Ctimes%2050%20minutes%7D)
[A] = 0.2251 M
The concentration of A after 50 minutes = 0.2251 M
The concentration of B after 50 minutes = 0.900 M - 0.2251 M = 0.6749 M
0.6749 M is the concentration of B after 50 minutes.
The average atomic mass of Sn is 118.71 g/mol
the percentage of heaviest Sn is 5.80%
the given mass of Sn is 82g
The total moles of Sn will be = mass / atomic mass = 82/118.71=0.691
Total atoms of Sn in 82g = 
the percentage of heaviest Sn is 5.80%
So the total atoms of
= 5.80% X 
Total atoms of
=
atoms
the mass of
will be = 
The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.