The mole<span> is the </span>unit of measurement<span> in the </span>International System of Units<span> (SI) for </span>amount of substance<span>. It is defined as the </span>amount<span> of a </span>chemical substance<span> that contains as many representative particles, e.g., </span>atoms<span>, </span>molecules<span>, </span>ions<span>, </span>electrons<span>, or </span>photons<span>, as there are atoms in 12 </span>grams<span> of </span>carbon-12<span> (</span>12<span>C), the </span>isotope<span> of </span>carbon<span> with </span>relative atomic mass<span> 12 by definition.
so to solve the moles, divide the mass with molar mass
moles = 4177 g / </span><span>133.34 g/mol
moles = 31.33 moles</span>
Hello young fellow friend I think the anwser is (C)
The straight horizontal line shows us that the object is moving at a constant speed
Answer:
The gas obeys Boyle’s law and the value of
both are equal to 40.0 atm L.
Explanation:
Initial volume of the gas = 
Initial pressure of the gas = 
Final volume of the gas = 
Final pressure of the gas = 
This law states that pressure is inversely proportional to the volume of the gas at constant temperature.

The equation given by this law is:








The gas in the cylinder is obeying Boyle's law.
The gas obeys Boyle’s law and the value of
both are equal to 40.0 atm L.
Answer:
Explanation:
None of the statement is true for both chemical and nuclear reactions. In chemical reactions, mass is always conserved and the type of atoms are also conserved.