1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
12

According to Aristotle, how fast do heavy objects fall compared to light objects?

Physics
1 answer:
Studentka2010 [4]3 years ago
4 0

Answer:

Hey

Your answer would be D (Aristotle stated that heavy objects fall faster than light objects). He thought be comparing a feather falling to a rock falling that you could see that heavier objects fall faster than light ones. of course now we know that all objects fall at the same speed and that weight does not affect that. only air drag affects how fast objects fall.

You might be interested in
What is fundamental questioning came now<br>cfy_tuhq_wjt​
Nadya [2.5K]

Answer:

juz taking points nvm no sry for u cos u too wasted point

8 0
2 years ago
Can you help me ASAPPP please help me
AveGali [126]

Answer:it is a

Explanation hope this helps .

6 0
3 years ago
) Music. When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note tha
vaieri [72.5K]

(a) 0.0021 s, 2926.5 rad/s

The frequency of the B note is

f= 466 Hz

The time taken to make one complete cycle is equal to the period of the wave, which is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{466 Hz}=0.0021 s

The angular frequency instead is given by

\omega = 2\pi f

And substituting

f = 466 Hz

We find

\omega = 2\pi (466 Hz)=2926.5 rad/s

(b) 20 Hz, 125.6 rad/s

In this case, the period of the sound wave is

T = 50.0 ms = 0.050 s

So the frequency is equal to the reciprocal of the period:

f=\frac{1}{T}=\frac{1}{0.050 s}=20 Hz

While the angular frequency is given by:

\omega = 2\pi f = 2 \pi (20 Hz)=125.6 rad/s

(c) 4.30\cdot 10^{14} Hz, 7.48\cdot 1^{14} Hz, 2.33\cdot 10^{-15} s, 1.34\cdot 10^{-15}s

The minimum angular frequency of the light wave is

\omega_1 = 2.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{2.7\cdot 10^{15}rad/s}{2\pi}=4.30\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{4.30\cdot 10^{14}Hz}=2.33\cdot 10^{-15}s

The maximum angular frequency of the light wave is

\omega_2 = 4.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{4.7\cdot 10^{15}rad/s}{2\pi}=7.48\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{7.48\cdot 10^{14}Hz}=1.34\cdot 10^{-15}s

(d) 2.0\cdot 10^{-7}s, 3.14\cdot 10^{7} rad/s

In this case, the frequency is

f=5.0 MHz = 5.0 \cdot 10^6 Hz

So the period in this case is

T=\frac{1}{f}=\frac{1}{5.0\cdot 10^6  Hz}=2.0 \cdot 10^{-7} s

While the angular frequency is given by

\omega = 2\pi f=2 \pi (5.0\cdot 10^{6}Hz)=3.14\cdot 10^{7} rad/s

7 0
3 years ago
An empty 230 kg elevator accelerates upward
elena-s [515]

Answer:

7.2 as used in the equation

3 0
3 years ago
In an electric vehicle, each wheel is powered by its own motor. The vehicle weight is 4,000 lbs. By regenerative braking, its sp
Slav-nsk [51]

Answer:

the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh

Explanation:

Given that;

weight of vehicle = 4000 lbs

we know that 1 kg = 2.20462

so

m = 4000 / 2.20462 =  1814.37 kg

Initial velocity V_{i} = 60 mph = 26.8224 m/s

Final velocity V_{f} = 30 mph = 13.4112 m/s

now we determine change in kinetic energy

Δk = \frac{1}{2}m(  V_{i}² - V_{f}² )

we substitute

Δk = \frac{1}{2}×1814.37( (26.8224)² - (13.4112)² )

Δk = \frac{1}{2} × 1814.37 × 539.5808

Δk = 489500 Joules

we know that; 1 kilowatt hour = 3.6 × 10⁶ Joule

so

Δk = 489500 / 3.6 × 10⁶

Δk = 0.13597 ≈ 0.136 kWh

Therefore, the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh

4 0
3 years ago
Other questions:
  • A rock dropped into a pond produces a wave that takes 11.3 s to reach the opposite shore, 26.5 m away. the distance between cons
    15·1 answer
  • 30 points to the first correct answer(btw they need to add a simple science subject).
    13·1 answer
  • Why are concepts in physics described with formulas
    8·1 answer
  • During a marathon race, a runner’s blood flow increases to 10.0 times her resting rate. Her blood’s viscosity has dropped to 95.
    8·1 answer
  • How do you find the velocity of an object?
    11·1 answer
  • Describe the role of minerals in the formation of rocks
    8·1 answer
  • If a 51kg snowboarder falls of a cliff, and is falling 15 m/s when they impact the snow, what is the average force of the snow o
    5·1 answer
  • What are some symptoms of depression?name three
    15·2 answers
  • DON'T ANSWER IF YOU DON'T KNOW
    5·2 answers
  • A pendulum in motion can either swing from side to side or turn in a continuous circle. The point at which it goes from one type
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!