answer:
yes
explanation:
At a separation of the surface of Earth (r=6400km) gravity wants pull the test mass closer and closer. ... So the work done by gravity is NEGATIVE. The gravitational potential energy is negative because us trying to do the opposite of what gravity wants needs positive energy.
Explanation:
For each object, the initial potential energy is converted to rotational energy and translational energy:
PE = RE + KE
mgh = ½ Iω² + ½ mv²
For the marble (a solid sphere), I = ⅖ mr².
For the basketball (a hollow sphere), I = ⅔ mr².
For the manhole cover (a solid cylinder), I = ½ mr².
For the wedding ring (a hollow cylinder), I = mr².
If we say k is the coefficient in each case:
mgh = ½ (kmr²) ω² + ½ mv²
For rolling without slipping, ωr = v:
mgh = ½ kmv² + ½ mv²
gh = ½ kv² + ½ v²
2gh = (k + 1) v²
v² = 2gh / (k + 1)
The smaller the value of k, the higher the velocity. Therefore:
marble > manhole cover > basketball > wedding ring
Since each student emits 100 W, so 170 students will emit:
total heat = 100 W * 170 = 17,000 W
Convert minutes to seconds:
time = 50 min * (60 s / min) = 3000 s
The energy is therefore:
E = 17,000 W * 3000 s
<span>E = 51 x 10^6 J = 51 MJ</span>
What happens to end a of the rod when the ball approaches it closely this first time is; It is strongly attracted.
<h3>Electrostatics</h3>
I have attached the image of the rod.
We are told that the ball is much closer to the end of the rod than the length of the rod. Thus, if we point down the rod several times, the distance of approach will experience no electric field and as such the charge on end point A of the rod must be comparable in magnitude to the charge on the ball.
This means that their fields will cancel.
Finally, we can conclude that when a charge is brought close to a conductor, the opposite charges will all navigate to the point that is closest to the charge and as a result, a strong attraction will be created.
This also applies to a strong conducting rod and therefore it is strongly attracted.
Read more about Electrostatics at; brainly.com/question/18108470
Answer:
The distance is
.
Explanation:
Given that,
Time 
The velocity is no more than a 14 % error in the speed of light.
So,
Velocity 
We need to calculate the distance
Using formula of speed


Where, v = speed
d = distance
t = time
Put the value into the formula


We know that,
The one side distance d' is



Hence, The distance is
.