Answer: The energy carried by an electromagnetic wave is proportional to the frequency of the wave.
Explanation:
Electromagnetic waves that are of higher energy than visible light (higher frequency, shorter wavelength) include ultraviolet light, X-rays, and gamma rays.
Answer:
0.0109 m ≈ 10.9 mm
Explanation:
proton speed = 1 * 10^6 m/s
radius in which the proton moves = 20 m
<u>determine the radius of the circle in which an electron would move </u>
we will apply the formula for calculating the centripetal force for both proton and electron ( Lorentz force formula)
For proton :
Mp*V^2 / rp = qp *VB ∴ rp = Mp*V / qP*B ---------- ( 1 )
For electron:
re = Me*V/ qE * B -------- ( 2 )
Next: take the ratio of equations 1 and 2
re / rp = Me / Mp ( note: qE = qP = 1.6 * 10^-19 C )
∴ re ( radius of the electron orbit )
= ( Me / Mp ) rp
= ( 9.1 * 10^-31 / 1.67 * 10^-27 ) 20
= ( 5.45 * 10^-4 ) * 20
= 0.0109 m ≈ 10.9 mm
The first three steps in scientific inquiry are related in that they are all equivalent to being on a fact finding mission. The three steps are to find or develop the question that must be answered, to study all related academic literature on the subject, and then to make a guess as to what the answer is.
Based on the sped of the waves and the tension as well as the needed wave speed, the required tension is 13.5 N.
<h3>What is the required tension?</h3>
Given the initial tension and speed, the tension that is required can be found by the formula:
= Initial tension x (Required speed / Initial speed)²
Solving gives:
= 6 x (30 / 20)²
= 6 x 9/4
= 13.5 N
In conclusion, the tension required is 13.5N.
Find out more on the tension on a wire at brainly.com/question/14290894.
#SPJ4