Answer:
These are Diffraction Grating Questions.
Q1. To determine the width of the slit in micrometers (μm), we will need to use the expression for distance along the screen from the center maximum to the nth minimum on one side:
Given as
y = nDλ/w Eqn 1
where
w = width of slit
D = distance to screen
λ = wavelength of light
n = order number
Making x the subject of the formula gives,
w = nDλ/y
Given
y = 0.0149 m
D = 0.555 m
λ = 588 x 10-9 m
and n = 3
w = 6.6x10⁻⁵m
Hence, the width of the slit w, in micrometers (μm) = 66μm
Q2. To determine the linear distance Δx, between the ninth order maximum and the fifth order maximum on the screen
i.e we have to find the difference between distance along the screen (y₉-y₅) = Δx
Recall Eqn 1, y = nDλ/w
given, D = 27cm = 0.27m
λ = 632 x 10-9 m
w = 0.1mm = 1.0x10⁻⁴m
For the 9th order, n = 9,
y₉ = 9 x 0.27 x 632 x 10-9/ 1.0x10⁻⁴m = 0.015m
Similarly, for n = 5,
y₅ = 5x 0.27 x 632 x 10-9/ 1.0x10⁻⁴m = 0.0085m
Recall, Δx = (y₉-y₅) = 0.015 - 0.0085 = 0.0065m
Hence, the linear distance Δx between the ninth order maximum and the fifth order maximum on the screen = 6.5mm
Answer:
1.4 m/s
Explanation:
From the question given above, we obtained the following data:
Initial Displacement (d1) = 0.9 m
Final Displacement (d2) = 1.6 m
Initial time (t1) = 1.5 secs
Final time (t2) = 2 secs
Velocity (v) =..?
The velocity of an object can be defined as the rate of change of the displacement of the object with time. Mathematically, it can be expressed as follow:
Velocity = change of displacement /time
v = Δd / Δt
Thus, with the above formula, we can obtain the velocity of the car as follow:
Initial Displacement (d1) = 0.9 m
Final Displacement (d2) = 1.6 m
Change in displacement (Δd) = d2 – d1 = 1.6 – 0.9
= 0.7 m
Initial time (t1) = 1.5 secs
Final time (t2) = 2 secs
Change in time (Δt) = t2 – t1
= 2 – 1.5
= 0.5 s
Velocity (v) =..?
v = Δd / Δt
v = 0.7/0.5
v = 1.4 m/s
Therefore, the velocity of the car is 1.4 m/s
Answer:
The magnitude of the magnetic force acting on the wire is zero, because the magnetic field is parallel to the wire.
In fact, the magnetic force exerted by the magnetic field on the wire is
where I is the current in the wire, L the length of the wire, B the magnetic field intensity and the angle between the direction of B and the wire. In our problem, B and the wire are parallel, so the angle is and so , therefore the magnetic force is zero: F=0.