Answer:
Explanation:
- The radio waves have a fixed relationship between the propagation speed (the speed of light in vacuum), the frequency and the wavelength, as follows:
- v = c = λ*f
where c= speed of light in vacuum = 3*10⁸ m/s, λ = wavelength =
4.92*10⁷ m.
Solving for f, we get the frequency of the radio waves:
f = 6.1 Hz
- Now, from the Hooke's law, we know that the mass attached at the end of the spring oscillates with an angular frequency defined by a fixed relationship between the spring constant k and the mass m, as follows:

- Now, we know that there exists a fixed relationship between the angular frequency and the frequency, as follows:
- We also know that f in (2) is the same that we got for the radio waves, so replacing (2) in (1), and rearranging terms, we can solve for k, as follows:

Answer:
10259.6 m
Explanation:
We are given that
Radius of small wheel,r=0.17 m
Radius of large wheel,r'=0.92 m
Initial velocity,u=0
Time,t=2.7 minutes=162 s
1 min=60 s
Velocity,v=10m/s
Time,t'=13.7 minutes=822 s
Time,t''=4.1 minutes=246 s

Substitute the values



Substitute the values




Total distance traveled by rider=s+s'+s''=809.6+8220+1230=10259.6 m
When a liquid changes to gas, this phase change is called vaporization or evaporization.
The free fall of the phone is an uniformly accelerated motion toward the ground, with constant acceleration equal to

So, assuming the downward direction as positive direction of the motion, since the phone starts from rest the distance covered by the phone after a time t is given by

And if we substitute t=2.7 s, we find the distance covered: