1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
padilas [110]
3 years ago
10

A 1-meter-long wire consists of an inner copper core with a radius of 1.0 mm and an outer aluminum sheathe, which is 1.0 mm thic

k, so the total radius of the wire is 2.0 mm. The resistivity of copper is 1.7×10−8 Ω·m and that of aluminum is 2.8×10−8 Ω·m. What is the total resistance of the wire? (Hint, are the two different materials in series or in parallel with each other?)
Physics
2 answers:
lara31 [8.8K]3 years ago
8 0

Answer:

Explanation:

Given:

Length, L = 1 m

radius, rc = 1.0 mm

Area of inner copper, Ac = pi × (0.001)^2

= 3.142 × 10^-6 m^2

Thickness, t = 1.0 mm

Total radius of the wire, rt = 2.0 mm

Area of outer aluminum sheathe, Aa = area of total wire, At - area of copper core, Ac

Area of total wire = pi × (0.002)^2

= 1.26 × 10^-5 m^2

Aa = 1.26 × 10^-5 - 3.142 × 10^-6

= 9.42 × 10^-6 m^2

Resistivity of copper, Dc = 1.7×10−8 Ω·m

Resistivity of aluminum, Da = 2.8×10−8 Ω·m

D = (R × A)/L

Rc = (Dc × L)/Ac

= (1.7×10−8 × 1)/3.142 × 10^-6

= 5.41 × 10^-3 Ω

Ra = (2.8×10−8 × 1)/9.42 × 10^-6

= 2.97 × 10^-3 Ω

Since both wires are connected at the same time to the voltage supply, therefore,

1/Rt = 1/Ra + 1/Rc

= 1/2.97 × 10^-3 + 1/5.41 × 10^-3

= 521.54

Rt = 1.92 × 10^-3 Ω

Mazyrski [523]3 years ago
4 0

Answer:

The total resistance of the wire is = 1.917\times10^{-3}

Explanation:

Since the wires will both be in contact with the voltage source at the same time and the current flows along in their length-wise direction, the two wires will be considered to be in parallel.

Hence, for resistances in parallel, the total resistance, R_{Total}

\frac{1}{R_{Total}}  =\frac{1}{R_{cu}  }+\frac{1}{R_{al}}

Parameters given:

Length of wire = 1 m

Cross sectional area of copper A_{cu}= \pi r^{2}= \pi \times (1\times 10^{-3}  )^{2} =3.142\times10^{-6} m^{2}

Cross sectional area of aluminium wire  

A_{al}= \pi( R^{2}-r^{2})\\\\ = \pi \times [ (2\times 10^{-3}  )^{2}-(1\times 10^{-3}  )^{2}] =9.42\times10^{-6} m^{2}\\

Resistivity of copper \rho _{cu}=1.7\times 10^{-8}  \Omega .m

Resistivity of Aluminium \rho _{al}=2.8\times 10^{-8}  \Omega .m

Resistance of copper R_{cu}= \frac{\rho_{cu} \times l}{A_{cu} }  =\frac{1.7\times 10^{-8} \times 1}{3.142\times10^{-6} } =5.41\times 10^{-3}\Omega

Resistance of aluminium R_{al}= \frac{\rho_{al} \times l}{A_{al} }  =\frac{2.8\times 10^{-8} \times 1}{9.42\times10^{-6} } =2.97\times 10^{-3}\Omega

The total resistance of the wire can be obtained as follows;

\frac{1}{R_{Total}}  =\frac{1}{5.41\times10^{-3}  }+\frac{1}{2.97\times10^{-3}}=521.52\frac{1}{\Omega}

R_{Total}= 1.917\times 10^{-3}\Omega

∴ The total resistance of the wire = 1.917\times 10^{-3}\Omega

You might be interested in
50 point!! Will mark brainliest!! (Please help)
jok3333 [9.3K]

What is the variable?

~<em>the</em><em> </em><em>price</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>variable</em><em>.</em>

What happens to demand?

~It'll go down. Since the price of snow blowers will increase then the quantity demanded will go down.

Hope this helps- have a good day bro cya)

4 0
2 years ago
Read 2 more answers
Suppose a cup of coï¬ee is at 100 degrees Celsius at time t = 0, it is at 70 degrees at t = 10 minutes, and it is at 50 degrees
Alexandra [31]

Answer:

T ambient = 10 degrees

Explanation:

Using Newton's Law of Cooling:

T(t) = Tamb + (Ti - Tamb)*e^(-kt)  ..... Eq 1

Ti = 100

We have two points to evaluate the above equation as follows:

T = 70 @ t = 10 using Eq 1  

70 = Tamb + (100 - Tamb)*e^(-10k)   ... Eq 2

T = 50 @ t = 20 using Eq 1

50 = Tamb + (100 - Tamb)*e^(-20k)   ... Eq 3

Solving the above Eq 2 and Eq 3 simultaneously:

Using Eq 2:

(70 - Tamb) / (100 - Tamb) = e^(-10k)  

Squaring both sides we get:

((70 - Tamb) / (100 - Tamb))^2 = e^(-20k)   .... Eq 4

Substitute Eq 4 into Eq 3

50 = Tamb + (100 - Tamb)*((70 - Tamb) / (100 - Tamb))^2

After simplification:

50 = (Tamb (100-Tamb) + (70-Tamb)^2) / (100 - Tamb)

5000 - 50*Tamb = 4900 - 40*Tamb

Tamb = 100 / 10 = 10 degrees

6 0
3 years ago
____ can lift the 403,342 ton pioneering spirit crane vessel 10 meters in 30 seconds as if it was a cork. This about 36 GJ if wo
azamat

Answer:   <u>Trough </u> can lift the 403,342 ton pioneering spirit crane vessel 10 meters in 30 seconds as if it was a cork. This about 36 GJ if work and 1 GW of power.

Explanation:

  • Why trough?

Trough is the correct answer because<u> pioneering scale usually abide only on  trough not on the other given options</u>. A long , narrow depression between the waves or ridges is known as a trough. The lower point in the period is the trough.

  • <u>Speed -:</u> Speed is the distance per unit of time that a body moves. It's a quantity scaler that has just magnitude.
  • <u>Wave energy -: </u>The transmission and capture of energy by ocean surface waves is wave energy (or wave power). The energy collected is then used for all sorts of useful work, including the generation of electricity, water desalination, and water pumping.
  • <u>Crest -</u>: A crest point within a cycle on a wave with the highest value of upward displacement. A crest is a point on a surface wave where the medium's displacement is at its height.
  • <u>Amplitude -:</u> The maximum displacement or distance measured from its equilibrium position, moved by a point on a vibrating body or wave, is called amplitude. It is equal to half of the vibration path's length.
  • <u>Period-</u>: The duration T is the time needed to pass a given point for one complete cycle of vibration. The wave length decreases as the frequency of a wave increases.
  • <u>Wavelength-:</u> The distance between two successive crests or troughs of a wave can be described as the wavelength. The frequency is inversely proportional to the wavelength. This implies that the longer the wavelength, the smaller the frequency. Similarly, the shorter the wavelength, the higher the frequency would be.
  • <u>Frequency</u> -: Frequency defines the number of waves in a given amount of time that travel through a fixed location. In the Hertz unit, frequency is normally measured.
  • <u>Information</u> -: A piece of data is a basic fact about the identity or properties of an object, i.e. a portion of its example.
  • <u>Milli -</u>: Milli is known as a merged form meaning 'thousand' (millipede) used in the metric system for unit names equal to one thousandth of the base unit (millimeter) given.

Hence , the answer is <u>TROUGH.</u>

7 0
3 years ago
Light waves have some similarities with water and sound waves, but they are not exactly the same. Describe all the differences y
makkiz [27]

<u>Answer:</u>


<h2>All the waves are pertubations that propagate (transport) energy.</h2><h2></h2>

Nevertheless, they have some differences:


1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.  

2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate

3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.

4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.

5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field

6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves

7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>


3 0
3 years ago
I dont know how to do this at all please help
worty [1.4K]
Wow !  I understand your shock.  I shook and vibrated a little
when I looked at this one too.

The reason for our shock is all the extra junk in the question,
put there just to shock and distract us.

"Neutron star", "5.5 solar masses", "condensed burned-out star".
That's all very picturesque, and it excites cosmic fantasies in
out brains when we read it, but it's just malicious decoration.
It only gets in the way, and doesn't help a bit.

The real question is:

What is the acceleration of gravity 2000 m from
the center of a mass of 1.1 x 10³¹ kg ?

Acceleration of gravity is

                           G  ·  M / R²

      =  (6.67 x 10⁻¹¹ N·m²/kg²) · (1.1 x 10³¹ kg) / (2000 m)²

      =  (6.67 x 10⁻¹¹  ·  1.1 x 10³¹ / 4 x 10⁶)      (N) · m² · kg / kg² · m²

      =             1.83 x 10¹⁴           (kg · m / s²) · m² · kg / kg² · m²

      =             1.83 x 10¹⁴            m / s²      

That's about  1.87 x 10¹³  times the acceleration of gravity on
Earth's surface.

In other words, if I  were standing on the surface of that neutron star,
I would weigh  1.82 x 10¹² tons, give or take.     
3 0
3 years ago
Other questions:
  • Which of the following is the best reason that scientific models are used? (1 point)
    9·2 answers
  • A car travelling at 20 m/s due north along the highway makes a right turn on to a side road that heads due east. It takes 50 s f
    14·1 answer
  • A combination reaction is when two or more reactants __ to form one product
    10·1 answer
  • A lamp has a current of 2.17 A. In hours, how long does it take for 1 mole of electrons to pass through the lamp?
    5·1 answer
  • What unit describes thr magnitude, or size of a force?
    8·2 answers
  • When NASA's Skylab reentered the Earth's atmosphere on July 11, 1979, it broke into a myriad of pieces. One of the largest fragm
    5·1 answer
  • The path of an object projected at a 45 degree angle with initial velocity of 80 feet per second is given by the −32 2 function
    14·1 answer
  • 1
    5·1 answer
  • What is the angular speed of the tip of the minute hand on a clock, in rad/s?
    11·1 answer
  • A sports car starts from rest it covers a distance of 900 m to attain a speed of 80m s determine the acceleration of the car and
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!