The periodic table is arranged in a way so that with each step the number of protons in the nucleus is increased by 1. It makes it for an easy choice to designate elements with numbers - atomic numbers, because in that case atomic number shows the number of protons possessed by the nucleus. Like this:
H has 1 proton
He has 2 protons
Li has 3 protons
Be has 4 protons and so on
Each proton has a charge of +1. The other particle present in the nucleus - the neutron - has zero electrical charge and thus irrelevant when computing the charge of a nucleus. It is easy to deduce that the nucleus charge equals the number of protons (which in turn equals the atomic number). So the nucleus charges are:
for H it's+1
for He it's +2
for Li it's +3
for Be it's +4 and so on
Atom is an electroneutral particle by definition. It means it's summed charge must be 0. Since we've looked at everything within the nucleus (the protons and the neutrons) it's time we turn our gaze to the space around it, which is full of orbiting electrons. Each electron has a charge of -1. To make up for the positive charge in the nucleus you have to fill the space aroung the nucleus with negative electrons.Thanks to the elementary nature of both proton and electron charge, you simply have to take the same number of electrons as that of protons! Like this:
H has 1 proton and 1 electron
He has 2 protons and 2 electrons
Li has 3 protons and 3 electrons
Be has 4 protons and 4 electrons and so on
Fe has atomic number 26. It means that Fe has 26 protons and 26 electrons. If it's a neutral atom
You typed 3. Is it accidental? If so, then the answer is above. If not, then you could be trying to type 56Fe +3, which means an ionic iron with charge +3. Charges are formed when you have too many or too few electrons to counter-balance the prositive charge of the nucleus. Charge +3 means you're 3 electrons short to negate the nucleus positive charge.
In other words, Fe+3 has 26 protons and 23 electrons.
Answer:
kp= 3.1 x 10^(-2)
Explanation:
To solve this problem we have to write down the reaction and use the ICE table for pressures:
2SO2 + O2 ⇄ 2SO3
Initial 3.4 atm 1.3 atm 0 atm
Change -2x - x + 2x
Equilibrium 3.4 - 2x 1.3 -x 0.52 atm
In order to know the x value:
2x = 0.52
x=(0.52)/2= 0.26
2SO2 + O2 ⇄ 2SO3
Equilibrium 3.4 - 0.52 1.3 - 0.26 0.52 atm
Equilibrium 2.88 atm 1.04 atm 0.52 atm
with the partial pressure in the equilibrium, we can obtain Kp.

Answer:
The use of pomace for animal feed might be chosen if minimizing production costs is desired
Explanation:
i've taken the test
Answer:
isn't that evaporation if not you can just delete my answer-
Explanation:
<u>Answer:</u> The partial pressure of helium gas is 0.80 atm
<u>Explanation:</u>
Dalton's law of partial pressure states that the total pressure of the system is equal to the sum of partial pressure of each component present in it.
To calculate the partial pressure of helium gas, we use the law given by Dalton, which is:

We are given:
Total pressure of the cylinder,
= 1.00 atm
Vapor pressure of oxygen gas,
= 0.20 atm
Putting values in above equation, we get:

Hence, the partial pressure of helium gas is 0.80 atm