Answer:
Since they're easy to separate, covalent compounds have low melting and boiling points. 2) Covalent compounds are soft and squishy (compared to ionic compounds, anyway). The reason for this is similar to the reason that covalent compounds have low melting and boiling points. When you hit an ionic compound with something, it feels very hard
Explanation:
mark brainliest plz
Answer:
strength = 10⁻²/10⁻³ = 10 times more acidic
Explanation:
1. A solution with a pH of 9 has a pOH of
pH + pOH = 14 => pOH = 14 - pH = 14 - 9 = 5
2. Which is more acidic, a solution with a pH of 6 or a pH of 4?
pH of 4 => Higher [H⁺] = 10⁻⁴M vs pH of 6 => [H⁺] = 10⁻⁶M
3. How many times more acidic is a solution with a pH of 2 than a solution with a pH of 3?
soln with pH = 2 => [H⁺] = 10⁻²M
soln with pH = 3 => [H⁺] = 10⁻³M
strength = 10⁻²/10⁻³ = 10 times more acidic
4. What is the hydrogen ion concentration [H + ] in a solution that has a pH of 8?
[H⁺] = 10^-pH = 10⁻⁸M
5. A solution has a pOH of 9.6. What is the pH? (Use the formula.)
pH + pOH = 14 => pH = 14 - 9.6 = 4.4
The pressure in atm exerted by 1 mole of methane placed into a bulb with a volume of 244.6 mL at 25°C is 101.94atm.
<h3>How to calculate pressure?</h3>
The pressure of an ideal gas can be calculated using the following formula:
PV = nRT
Where;
- P = pressure
- V = volume
- n = number of moles
- R = gas law constant
- T = temperature
According to information in this question;
- T = 25°C = 25 + 273 = 298K
- V = 244.6mL = 0.24L
- R = 0.0821 Latm/Kmol
P × 0.24 = 1 × 0.0821 × 298
0.24P = 24.47
P = 24.47/0.24
P = 101.94atm
Therefore, the pressure in atm exerted by 1 mole of methane placed into a bulb with a volume of 244.6 mL at 25°C is 101.94atm.
Learn more about pressure at: brainly.com/question/11464844
Answer and Explanation:
a. The equation of K of this reaction is shown below:-
3 A + 5 B + 4 C↔5 D + 7 E + F

b. The moles of compound F is shown below:-
3 A + 5 B + 4 C↔5 D + 7 E + F
2 moles
Now, the mole of produced is

Now, we will the value of c by using the above equation

After solving the above equation we will get
0.5 moles