<span>1=H, 2=B, 3=F, 4=A,5=C,6=E, 7=D, 8=G
</span>9: 69Ga=60.12% and 71Ga=39.88%; total=69.797amu
10: 27 27.977 92.23; 28 28.976 4.67; 29 29.974 3.10; abundance =28.07 Silicon
I hope this helps!
I think the correct answer from the choices listed above is option C. The can <span>from the cupboard will lose carbon dioxide more quickly because it is warmer and gases are less soluble in warmer temperatures. </span> Solubility of gases is a strong function of temperature and as well as pressure.
Use Charles' Law: V1/T1 = V2/T2. We assume the pressure and mass of the helium is constant. The units for temperature must be in Kelvin to use this equation (x °C = x + 273.15 K).
We want to solve for the new volume after the temperature is increased from 25 °C (298.15 K) to 55 °C (328.15 K). Since the volume and temperature of a gas at a constant pressure are directly proportional to each other, we should expect the new volume of the balloon to be greater than the initial 45 L.
Rearranging Charles' Law to solve for V2, we get V2 = V1T2/T1.
(45 L)(328.15 K)/(298.15 K) = 49.5 ≈ 50 L (if we're considering sig figs).
Particles below the surface of a liquid
I think the answer is [Xe] 6s2