If the acceleration is constant (negative or positive) the instantaneous acceleration cannot be
Average acceleration: [final velocity - initial velocity ] /Δ time
Instantaneous acceleration = d V / dt =slope of the velocity vs t graph
If acceleration is increasing, the slope of the curve at one moment will be higher than the average acceleration.
If acceleration is decreasing, the slope of the curve at one moment will be lower than the average acceleration.
If acceleration is constant, the acceleration at any moment is the same, then only at constant accelerations, the instantaneuos acceleration is the same than the average acceleration.
Constant zero acceleration is a particular case of constant acceleration, so at constant zero acceleration the instantaneous accelerations is the same than the average acceleration: zero. But, it is not true that only at zero acceleration the instantaneous acceleration is equal than the average acceleration.
That is why the only true option and the answer is the option D. only at constant accelerations.
Answer:
D
Explanation:
Mars is the planet between Earth and Jupiter, or the 4th planet from the Sun.
Answer:
7 orbitals are allowed in a sub shell if the angular momentum quantum number for electrons in that sub shell is 3.
Explanation:
We that different values of m for a given l provide the total number of ways in which a given s, p,d and f sub shells in presence of magnetic field can be arranged in space along x, y ,z- axis or total number of orbitals into which a given subshell can be divided.
Range for given l lies between -l to +l .
The possible values of m are -3 , -2 , -1 , 0 , 1 ,2 , 3 .
Total number of orbitals are 7.
Answer:
3 order dark fringe
Explanation:
y = Distance from central bright fringe = 204 mm
λ = Wavelength = 400 nm
L = Distance between screen and source = 1 m
d = Slit distance = 6 μm


Order of fringe is 3
So, it is a Dark order fringe
The harmonic frequency of a musical instrument is the minimum frequency at which a string that is fixed at both ends in the instrument may vibrate. The harmonic frequency is known as the first harmonic. Each subsequent harmonic has a frequency equal to:
n*f, where n is the number of the harmonic and f is the harmonic frequency. Therefore, the harmonic frequency may be calculated using:
f = 100 / 2
f = 50 Hz