Answer: 4.9 x 10-3 N
Explanation:
A = 500cm^2 = 5 x 10^-2 m^2
V = 5 m/s
R = 10^-3 g/cm^2.sec = 10^-2kg/m^2 . sec
Prain water = R / V = 10^-2 / 5 = 2 x 10-3 kg/m^3
For the stationary bowl,
dm/dt =pAv= RA
F= dp/dt = (dm/dt) v = RAv = 2.5 x 10^-3 N
Bowl moving upwards to speed u = 2 m/s
dm/dt = pA ( v + u) / v
F = dp/dt = (dm/dt)(v+u) = RA (v+u)^2 / v = 4.9 x 10^-3 N
30 beats/1min = 30 beats/60 sec = .5 beat/sec = 1/2 Hz
740 Hz - 1/2 Hz = 739.5 Hz
Answer - c. 739.5 Hz
Answer:
(C) 40m/s
Explanation:
Given;
spring constant of the catapult, k = 10,000 N/m
compression of the spring, x = 0.5 m
mass of the launched object, m = 1.56 kg
Apply the principle of conservation of energy;
Elastic potential energy of the catapult = kinetic energy of the target launched.
¹/₂kx² = ¹/₂mv²
where;
v is the target's velocity as it leaves the catapult
kx² = mv²
v² = kx² / m
v² = (10000 x 0.5²) / (1.56)
v² = 1602.56
v = √1602.56
v = 40.03 m/s
v ≅ 40 m/s
Therefore, the target's velocity as it leaves the spring is 40 m/s
Answer:
Electromagnetic spectrum is the arrangement of all kinds of radiation according to their frequency and wavelength. They don't require a material medium for their propagation.They are transverse waves that travel in a direction perpendicular to the direction of vibration.
Answer:
As they absorb energy, they are broken.
Explanation
Solutes dissolve when they interact with water. This is because, the attraction of solute particles with each other weakens and become replaced by solute-solvent interaction. As the water surrounds the solute, the solute is now said to be hydrated.
Energy is required to break solute-solute bonds. This energy absorbed in breaking solute-solute bonds is compensated for by the energy liberated when solute particles are hydrated.
If energy required to break solute-solute interaction is less than the energy liberated when solute particles are hydrated, the substance will dissolve in water.
Hence, as a substance dissolve in water, energy is absorbed when solute-solute interactions are broken.