To develop this problem we require the concepts related to wavelength and its expression to calculate it.
The wavelength is given by

Where,
light velocity
f = frequency.
Our values are given by,



Then,
Visible
Gamma Ray
Infrared
<em>*Note the designation on the type of rays that are, can be found in consulted via On-line or in the optical books referring to the electromagnetic spectrum table with their respective ranges.</em>
The only item on that list that's an electromagnetic wave
is C). shortwave radio waves.
Answer:
ratio = 1 : 4.5
Explanation:
If m₁ is the mass of the star and m₂ the mass of the planet, the force of gravity F₁ for planet 1 is given by:

The force F₂:

The ratio:

The velocity of sound in at 300C is 511.3 m/s.
Explanation:
The equation that gives the speed of sound in ar as a function of the air temperature is the following:

where
T is the temperature of the air, measured in Celsius degrees
In this problem, we want to find the speed of sound in ar for a temperature of

Substituting into the equation, we find:

So, the velocity of sound in at 300C is 511.3 m/s.
Learn more about sound waves:
brainly.com/question/4899681
#LearnwithBrainly
when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum

v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values

since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N