The change in potential energy when the block falls to ground is -480J.
The maximum change in kinetic energy of the ball is 480 J.
The initial kinetic energy of the ball is 0 J.
The final kinetic energy of the ball is 0.148J.
The initial potential energy of the ball is 0.187 J.
The final potential energy of the ball is 0 J.
The work done by the air resistance is 0.039 J.
<h3>Change in potential energy when the block falls to ground</h3>
ΔP.E = -mgh
ΔP.E = -Wh
ΔP.E = - 40 x 12
ΔP.E = -480 J
<h3>Maximum change in kinetic energy of the ball</h3>
ΔK.E = - ΔP.E
ΔK.E = - (-480 J)
ΔK.E = 480 J
<h3>Initial kinetic energy of the ball</h3>
K.Ei = 0.5mv²
where;
- v is zero since it is initially at rest
K.Ei = 0.5m(0) = 0
<h3>Final kinetic energy</h3>
K.Ef = 0.5mv²
K.Ef = 0.5(0.0091)(5.7)²
K.Ef = 0.148 J
<h3>Initial potential energy of the ball</h3>
P.Ei = mghi
P.Ei = 0.0091 x 9.8 x 2.1
P.Ei = 0.187 J
<h3>Final potential energy</h3>
P.Ef = mghf
P.Ef = 0.0091 x 9.8 x 0
P.Ef = 0
<h3>Work done by the air resistance</h3>
W = ΔE
W = P.E - K.E
W = 0.187 J - 0.148 J
W = 0.039 J
Learn more about potential energy here: brainly.com/question/1242059
#SPJ1
<h3 />
Divide distance by the time it takes to travel that distance
the formula for time is divide distance/speed
Answer:
103.5 meters
Explanation:
Given that a stunt person has to jump from a bridge and land on a boat in the water 22.5 m below. The boat is cruising at a constant velocity of 48.3 m/s towards the bridge. The stunt person will jump up at 6.45 m/s as they leave the bridge.
The time the person will jump to a certain spot under the bridge can be calculated by using the formula below:
h = Ut + 1/2gt^2
since the person will fall under gravity, g = 9.8 m/s^2
Also, let assume that the person jump from rest, then, U = 0
Substitute h, U and g into the formula above
22.5 = 1/2 * 9.8 * t^2
22.5 = 4.9t^2
22.5 = 4.9t^2
t^2 = 22.5/4.9
t^2 = 4.59
t = 
t = 2.143 seconds
From definition of speed,
speed = distance /time
Given that the boat is cruising at a constant velocity of 48.3 m/s towards the bridge, substitute the speed and the time to get the distance.
48.3 = distance / 2.143
distance = 48.3 * 2.143
distance = 103.5 m
Therefore, the boat should be 103.5m away from the bridge at the moment the stunt person jumps?
Uranium is the right answer. Scientists use 5 percent of the uranium after the bomb is refused to create stronger and better nuclear bombs.
P = m*v
conservation of momentum suggests
initial momentum equals final momentum
mv-initial = mv-final
(0.0010 kg)(50 m/s) = (0.0010 kg + 0.35 kg)v
thus:
v = (0.0010)(50)/(0.351) = 0.142 m/s