1500 mm of copper wire are produced by converting 150 cm of copper wire.
The following is the centimeter to millimeter conversion factor: 1 cm is equivalent to 10 mm.
Consequently, 150 cm will equal 150 x 10 = 1500 mm.
- The multi-step process of unit conversion involves multiplying or dividing by a numerical factor.
- Unit conversion is the process of converting the measurement of a given amount between various units, often by multiplicative conversion factors that alter the value of the measured quantity without altering its effects.
- Unit conversion is a multi-step procedure that involves adding, subtracting, multiplying, or dividing by a conversion factor.
- The process may also require the selection of the correct number of significant digits, and rounding.
To learn more about unit conversion visit:
brainly.com/question/11543684
#SPJ9
Answer:
304.19 g
Explanation:
M(H2) = 2*1 = 2 g/mol
54.1 g H2 * 1 mol H2/2gH2 = 27.05 mol H2
3H2 + N2 ------> 2NH3
from reaction 3 mol 2 mol
given 27.05 mol x mol
x = 27.05*2/3 = 18.03 mol NH3
M(NH3) = 14 +3*1 = 17 g/mol
18.03 mol NH3 * 17 g NH3/ 1 mol NH3 ≈ 307 g
Closeet answer is 304.19 g.
Answer:
The correct answer is B.
Explanation:
Heterogeneous equilibrium is that in which reagents and products are present in more than one phase.
When the reaction is carried out in a closed container, three equilibrium phases are present: solid magnesium oxide, solid magnesium sulfate and gaseous sulfur trioxide.
Hence, the equilibrium contant is given by:
![K=\frac{[MgSO_4]}{[MgO][SO_3]} =\frac{1}{[SO_3]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BMgSO_4%5D%7D%7B%5BMgO%5D%5BSO_3%5D%7D%20%3D%5Cfrac%7B1%7D%7B%5BSO_3%5D%7D)
The concentrations in the equilibrium equation are the relationships of the real concentrations between the concentrations in the standard state. Since the standard state of a pure solid is the pure solid itself, the ratio of concentrations for a pure solid is equal to one.
Now, we analyse each statement:
I) As the reaction is endothermic (ΔH>0), increasing the temperature shifts the balance to the right because excess heat will be used to form more products.
II) Increasing the volume will decrease the concentration of SO₃, so Q>K and then this shifts the balance to the left.
III) As it is a heterogeneous balance, adding MgO will not affect the balance.
IV) Removing SO3 will decrease its concentration and therefore the reaction equilibrium will shift to the left.