One electron is shared between ethane, H3-C-C-H3
Answer:
C6 H12 O6 + 6 O2 → 6 C O2 + 6 H2 O + energy
Explanation:
No because dew is water droplets that come from condensation rather than from rain coming at night
Answer:
The answer to your question is below:
Explanation:
Having exactly the same data as the previous experiment I think that having the same data as the previous experiment is extremely important but not the most important, for me is the second most important.
Using the same procedure and variables as the previous experiment For me, this is the most importan thing when a scientist is designing an experiment, because if he or she follow exactly the same procedure and variables, then the results will be very close.
Conducting an experiment similar to the previous experiment This characteristic is important but not the most important.
Using the same laboratory that was used in the previous experiment It is not important the laboratory, if the procedure and variables are the same, your experiment must give the same results in whatever laboratory.
The question is incomplete, complete question is ;
A deep-sea diver uses a gas cylinder with a volume of 10.0 L and a content of 51.8 g of
and 33.1 g of He. Calculate the partial pressure of each gas and the total pressure if the temperature of the gas is 21°C.Express the pressures in atmospheres to three significant digits separated by commas.
Answer:
Partial pressure of the oxygen gas is 3.91 atm.
Partial pressure of the helium gas is 20.0 atm
Total pressure of the gases is 24.0 atm
Explanation:
Moles of oxygen gas = 
Moles of helium gas = 
Total moles of gas = 
Volume of the cylinder = V = 10.0 L
Total pressure in the cylinder = P = ?
Temperature of the gas in cylinder = T = 21°C = 21 + 273 K = 294 K
PV = nRT ( ideal gas equation )


P = 23.88 atm ≈ 23.9
Partial pressure of the individual gas will be determined by the help of Dalton's law:
partial pressure = Total pressure × mole fraction of gas
Partial pressure of the oxygen gas


Partial pressure of the helium gas

