The given equilibrium reaction is,

The given reaction is exothermic. So, heat energy will be a product. Therefore, decreasing the temperature (heat energy) would lead to the formation of more products as when the amount of energy which is a product is reduced, there is more room for the products to form.
Increasing the pressure would shift the equilibrium towards that side which has least number of moles of the gaseous substance. Hence, here increasing the pressure would lead to the formation of more products by shifting the equilibrium towards the right side.
Decreasing the volume would make the equilibrium shift towards the least number of moles of the gaseous substance. So, here in this equilibrium decreasing the volume would lead to the formation of more products.
Answer:

Explanation:
First, we need to find the molecular mass of water (H₂O).
H₂O has:
- 2 Hydrogen atoms (subscript of 2)
- 1 Oxygen atom (implied subscript of 1)
Use the Periodic Table to find the mass of hydrogen and oxygen. Then, multiply by the number of atoms of the element.
- Hydrogen: 1.0079 g/mol
- Oxygen: 15.9994 g/mol
There are 2 hydrogen atoms, so multiply the mass by 2.
- 2 Hydrogen: (1.0079 g/mol)(2)= 2.0158 g/mol
Now, find the mass of H₂O. Add the mass of 2 hydrogen atoms and 1 oxygen atom.
- 2.0158 g/mol + 15.9994 g/mol = 18.0152 g/mol
Next, find the amount of moles using the molecular mass we just calculated. Set up a ratio.

Multiply. The grams of H₂O will cancel out.



The original measurement given had two significant figures (3,2). We must round to have 2 significant figures. All the zeroes before the 1 are not significant. So, round to the ten thousandth.
The 7 in the hundred thousandth place tells us to round up.

There are about <u>0.0018 moles in 0.032 grams.</u>
Answer:
7 meters per second was her speed
1.75 moles or 1.8 moles if you’re rounding in terms of sig figs
The answer should be answer B. More than three times the sun. I hope this helped! :)))